| Home > Articles > Published articles > Quadratic systems with a rational first integral of degree three : |
| Date: | 2010 |
| Abstract: | A quadratic polynomial differential system can be identified with a single point of R12 through its coefficients. The phase portrait of the quadratic systems having a rational first integral of degree 3 have been studied using normal forms. Here using the algebraic invariant theory, we characterize all the non-degenerate quadratic polynomial differential systems in R12 having a rational first integral of degree 3. We show that there are only 31 different topological phase portraits in the Poincaré disc associated to this family of quadratic systems up to a reversal of the sense of their orbits, and we provide representatives of every class modulo an affine change of variables and a rescaling of the time variable. Moreover, each one of these 31 representatives is determined by a set of algebraic invariant conditions and we provide for it a first integral. |
| Grants: | Ministerio de Educación y Ciencia MTM2008-03437 Agència de Gestió d'Ajuts Universitaris i de Recerca 2001/SGR-00173 |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Quadratic vector fields ; Integrability ; Rational first integral ; Phase portraits |
| Published in: | Rendiconti del Circolo Matematico di Palermo, Vol. 59, Issue 3 (December 2010) , p. 419-449, ISSN 1973-4409 |
Postprint 22 p, 510.1 KB |