Web of Science: 3 citations, Scopus: 3 citations, Google Scholar: citations
Unraveling the properties of sharply defined submicron scale FeCu and FePd magnetic structures fabricated by electrodeposition onto electron-beam-lithographed substrates
Dislaki, Evangelia (Universitat Autònoma de Barcelona. Departament de Física)
Cialone, Matteo (Istituto Nazionale di Ricerca Metrologica)
Celegato, Federica (Istituto Nazionale di Ricerca Metrologica)
Rizzi, Paola (Università di Torino. Dipartimento di Chimica (Italy))
Tiberto, Paola (Istituto Nazionale di Ricerca Metrologica)
Vadilonga, Simone (Helmholtz-Zentrum Berlin für Materialen und Energie GmbH (Germany))
Többens, Daniel (Helmholtz-Zentrum Berlin für Materialen und Energie GmbH (Germany))
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)
Pellicer Vilà, Eva Maria (Universitat Autònoma de Barcelona. Departament de Física)

Date: 2020
Abstract: In this work, Fe-X (X = Cu, Pd) submicron-scale structures were electrodeposited onto pre-patterned substrates prepared by e-beam lithography. The FeCu and FePd (with reduced Pd content) systems were investigated as attractive candidates for a variety of potential applications in magnetic data storage and biomedicine. Confined growth in the restricted cavities resulted in a nanoscale grain size leading to well-defined geometries with sharp edges and corners and an average height of up to 215 nm. Specifically, nine 100 μm × 100 μm arrays of three geometries (cylindrical, rectangular and cruciform) in three different sizes were created. In addition, the total deposition time ranged from 3. 5 s (FeCu) to 200 s (FePd), i. e. much faster than by traditional physical vapor deposition approaches and was performed at ambient conditions. Magnetic force microscopy for the cylindrical and cruciform structures revealed virtually no contrast at zero field, suggesting magnetic curling effects (instead of coherent rotation) during magnetization reversal. These curling effects result in low values of remanent magnetization, which is advantageous in minimizing dipolar interactions between the structures either when they are deposited onto the substrate or eventually dispersed in a liquid (e. g. in biomedical applications, as drug delivery carriers, where particle agglomeration is undesirable).
Grants: European Commission 642642
European Commission 648454
Ministerio de Economía y Competitividad MAT2017-86357-C3-1-R
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-292
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Electrodeposition ; Submicron structures ; Electron-beam lithography ; Ferromagnetic
Published in: Materials & design, Vol. 193 (August 2020) , art. 108826, ISSN 0261-3069

DOI: 10.1016/j.matdes.2020.108826


Postprint
43 p, 2.0 MB

12 p, 6.7 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Group of Smart Nanoengineered Materials, Nanomechanics and Nanomagnetism (Gnm3) > SPIN-PORICS
Articles > Research articles
Articles > Published articles

 Record created 2020-10-28, last modified 2023-06-04



   Favorit i Compartir