Web of Science: 2 citations, Scopus: 1 citations, Google Scholar: citations
The Markus-Yamabe conjecture for discontinuous piecewise linear differential systems in Rn separated by a conic × Rn-2
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Valls, Clàudia 1973- (Universidade de Lisboa. Instituto Superior Técnico. Departamento de Matemática)

Date: 2023
Abstract: In 1960 Markus and Yamabe made the conjecture that if a C1 differential system x˙=F(x) in Rn has a unique equilibrium point and DF(x) is Hurwitz for all x∈Rn, then the equilibrium point is a global attractor. This conjecture was completely solved in 1997 and it turned out to be true in R2 and false in Rn for all n≥3. In (The Markus-Yamabe conjecture for continuous and discontinuous piecewise linear differential systems, 2020) the authors extended the Markus-Yamabe conjecture to continuous and discontinuous piecewise linear differential systems in Rn separated by a hyperplane, they proved for the continuous systems that the extended conjecture is true in R2 and false in Rn for all n≥3, but for discontinuous systems they proved that the conjecture is false in Rn for all n≥2. In this paper first we show that there are no continuous piecewise linear differential systems separated by a conic×Rn-2 except the linear differential systems in Rn. And after we prove that the extended Markus-Yamabe conjecture to discontinuous piecewise linear differential systems in Rn separated by a conic×Rn-2 is false in Rn for all n≥2.
Grants: Agencia Estatal de Investigación PID2019-104658GB-I00
European Commission 777911
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Markus-Yamabe conjecture ; Hurwitz matrix ; Discontinuous piecewise linear differential systems
Published in: Journal of dynamics and differential equations, Vol. 35 (September 2023) , p.2579-2588, ISSN 1572-9222

DOI: 10.1007/s10884-021-10110-5


Postprint
10 p, 761.2 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles

 Record created 2022-03-18, last modified 2025-10-12



   Favorit i Compartir