Home > Articles > Published articles > The limit cycles of piecewise linear differential systems formed by centers and separated by irreducible cubic curves |
Date: | 2021 |
Abstract: | In the qualitative theory of the planar discontinuous piecewise linear differential systems one of the main problems is the study of the number of crossing limit cycles that these systems can have. We study the number of crossing limit cycles of discontinuous piecewise linear differential systems formed by centers and separated by an irreducible algebraic cubic curve. We prove that these differential systems only can exhibit 0, 1, 2 or 3 crossing limit cycles having two intersection points with the cubic of separation. |
Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
Language: | Anglès |
Document: | Article ; recerca ; Versió acceptada per publicar |
Subject: | Limit cycles ; Discontinuous piecewise linear differential systems ; Linear differential centers ; Irreducible cubic curves |
Published in: | Dynamics of Continuous, Discrete and Impulsive Systems. Series A. Mathematical Analysis, Vol. 28, Núm. 3a (2021) , p. 153-192, ISSN 1201-3390 |
Postprint 35 p, 1.2 MB |
The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles