Web of Science: 3 citations, Scopus: 3 citations, Google Scholar: citations
Existence of at most two limit cycles for some non-autonomous differential equations
Gasull, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Zhao, Yulin (Sun Yat-sen University. School of Mathematics)

Date: 2023
Abstract: It is know that the non-autonomous differential equations dx/dt = a(t) + b(t)|x|, where a(t) and b(t) are 1-periodic maps of class C1, have no upper bound for their number of limit cycles (isolated solutions satisfying x(0) = x(1)). We prove that if either a(t) or b(t) does not change sign, then their maximum number of limit cycles is two, taking into account their multiplicities, and that this upper bound is sharp. We also study all possible configurations of limit cycles. Our result is similar to other ones known for Abel type periodic differential equations although the proofs are quite different.
Grants: Agencia Estatal de Investigación PID2019-104658GB-I00
Agencia Estatal de Investigación CEX2020-001084-M
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Non-autonomous differential equation ; Limit cycle ; Periodic orbit
Published in: Communications on Pure and Applied Analysis, Vol. 22, Issue 3 (March 2023) , p. 970-982, ISSN 1534-0392

DOI: 10.3934/cpaa.2023016


Postprint
13 p, 370.0 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles

 Record created 2023-06-01, last modified 2025-06-23



   Favorit i Compartir