Google Scholar: cites
Molecular Bridge Engineering for Tuning Quantum Electronic Transport and Anisotropy in Nanoporous Graphene
Moreno, Cesar (Institut Català de Nanociència i Nanotecnologia)
Diaz de Cerio, Xabier (Donostia International Physics Center)
Vilas-Varela, Manuel (Universidade de Santiago de Compostela)
Tenorio, María José (Institut Català de Nanociència i Nanotecnologia)
Sarasola, Ane (Universidad del País Vasco)
Brandbyge, Mads (Technical University of Denmark)
Peña, Diego (Universidade de Santiago de Compostela)
Garcia-Lekue, Aran (Ikerbasque)
Mugarza, Aitor (Institut Català de Nanociència i Nanotecnologia)

Data: 2023
Resum: Recent advances on surface-assisted synthesis have demonstrated that arrays of nanometer wide graphene nanoribbons can be laterally coupled with atomic precision to give rise to a highly anisotropic nanoporous graphene structure. Electronically, this graphene nanoarchitecture can be conceived as a set of weakly coupled semiconducting 1D nanochannels with electron propagation characterized by substantial interchannel quantum interferences. Here, we report the synthesis of a new nanoporous graphene structure where the interribbon electronic coupling can be controlled by the different degrees of freedom provided by phenylene bridges that couple the conducting channels. This versatility arises from the multiplicity of phenylene cross-coupling configurations, which provides a robust chemical knob, and from the interphenyl twist angle that acts as a fine-tunable knob. The twist angle is significantly altered by the interaction with the substrate, as confirmed by a combined bond-resolved scanning tunneling microscopy (STM) and ab initio analysis, and should accordingly be addressable by other external stimuli. Electron propagation simulations demonstrate the capability of either switching on/off or modulating the interribbon coupling by the corresponding use of the chemical or the conformational knob. Molecular bridges therefore emerge as efficient tools to engineer quantum transport and anisotropy in carbon-based 2D nanoarchitectures.
Ajuts: Ministerio de Economía y Competitividad SEV-2017-0706
Ministerio de Ciencia e Innovación TED2021-132388B-C41
Agencia Estatal de Investigación PID2019-107338RB-C66
Ministerio de Ciencia e Innovación RYC2019-028110-I
Agencia Estatal de Investigación PID2019-107338RB-C62
Agencia Estatal de Investigación PID2019-107338RB-C65
Ministerio de Ciencia e Innovación TED2021-132388B-C42
Ministerio de Ciencia e Innovación TED2021-132388B-C44
Agencia Estatal de Investigación PCI2019-111890-2
Agencia Estatal de Investigación PCI2019-111933-2
Ministerio de Ciencia e Innovación CEX2021-001214-S
Ministerio de Ciencia e Innovación BES-2017-08078
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Publicat a: Journal of the American Chemical Society, Vol. 145, Issue 16 (April 2023) , p. 8988-8995, ISSN 1520-5126

DOI: 10.1021/jacs.3c00173
PMID: 36988648


8 p, 7.7 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2023-10-11, darrera modificació el 2023-10-22



   Favorit i Compartir