The Solution of the Extended 16th Hilbert Problem for Some Classes of Piecewise Differential Systems
Baymout, Louiza 
(University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj)
Benterki, Rebiha 
(University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj)
Llibre, Jaume 
(Universitat Autònoma de Barcelona. Departament de Matemàtiques)
| Date: |
2024 |
| Abstract: |
The limit cycles have a main role in understanding the dynamics of planar differential systems, but their study is generally challenging. In the last few years, there has been a growing interest in researching the limit cycles of certain classes of piecewise differential systems due to their wide uses in modeling many natural phenomena. In this paper, we provide the upper bounds for the maximum number of crossing limit cycles of certain classes of discontinuous piecewise differential systems (simply PDS) separated by a straight line and consequently formed by two differential systems. A linear plus cubic polynomial forms six families of Hamiltonian nilpotent centers. First, we study the crossing limit cycles of the PDS formed by a linear center and one arbitrary of the six Hamiltonian nilpotent centers. These six classes of PDS have at most one crossing limit cycle, and there are systems in each class with precisely one limit cycle. Second, we study the crossing limit cycles of the PDS formed by two of the six Hamiltonian nilpotent centers. There are systems in each of these 21 classes of PDS that have exactly four crossing limit cycles. |
| Grants: |
European Commission 777911 Agencia Estatal de Investigación PID2019-104658GB-I00
|
| Rights: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Subject: |
Discontinuous piecewise differential system ;
Hamiltonian nilpotent center ;
Cubic polynomial differential system ;
Limit cycle ;
Vector field |
| Published in: |
Mathematics, Vol. 12, Issue 3 (February 2024) , art. 464, ISSN 2227-7390 |
DOI: 10.3390/math12030464
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Experimental sciences >
GSD (Dynamical systems)Articles >
Research articlesArticles >
Published articles
Record created 2024-02-16, last modified 2024-09-17