| Home > Articles > Published articles > The period of the limit cycle bifurcating from a persistent polycycle |
| Date: | 2025 |
| Abstract: | We consider smooth families of planar polynomial vector fields {Xµ}µ∈Λ, where Λ is an open subset of R N , for which there is a hyperbolic polycycle Γ that is persistent (i. e. , such that none of the separatrix connections is broken along the family). It is well known that in this case the cyclicity of Γ at µ0 is zero unless its graphic number r(µ0) is equal to one. It is also well known that if r(µ0) = 1 (and some generic conditions on the return map are verified) then the cyclicity of Γ at µ0 is one, i. e. , exactly one limit cycle bifurcates from Γ. In this paper we prove that this limit cycle approaches Γ exponentially fast and that its period goes to infinity as 1/|r(µ) - 1| when µ → µ0. Moreover, we prove that if those generic conditions are not satisfied, although the cyclicity may be exactly 1, the behavior of the period of the limit cycle is not determined. |
| Grants: | Agencia Estatal de Investigación PID2021-125625NB-I00 Agencia Estatal de Investigación PID2020-118281GB-C33 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-01015 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113 Agencia Estatal de Investigación CEX2020-001084-M |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió publicada |
| Subject: | Limit cycle ; Polycycle ; Cyclicity ; Period ; Asymptotic expansion ; Dulac map |
| Published in: | Publicacions matemàtiques, Vol. 69 Núm. 2 (2025) , p. 299-318 (Articles) , ISSN 2014-4350 |
20 p, 567.8 KB |