Web of Science: 0 citations, Scopus: 0 citations, Google Scholar: citations
The period of the limit cycle bifurcating from a persistent polycycle
Marín Pérez, David (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Queiroz, Lucas (Universidade Estadual Paulista "Júlio de Mesquita Filho". Instituto de Biociências, Letras e Ciências Exatas)
Villadelprat Yagüe, Jordi (Universitat Autònoma de Barcelona. Departament de Matemàtiques)

Date: 2025
Abstract: We consider smooth families of planar polynomial vector fields {Xµ}µ∈Λ, where Λ is an open subset of R N , for which there is a hyperbolic polycycle Γ that is persistent (i. e. , such that none of the separatrix connections is broken along the family). It is well known that in this case the cyclicity of Γ at µ0 is zero unless its graphic number r(µ0) is equal to one. It is also well known that if r(µ0) = 1 (and some generic conditions on the return map are verified) then the cyclicity of Γ at µ0 is one, i. e. , exactly one limit cycle bifurcates from Γ. In this paper we prove that this limit cycle approaches Γ exponentially fast and that its period goes to infinity as 1/|r(µ) - 1| when µ → µ0. Moreover, we prove that if those generic conditions are not satisfied, although the cyclicity may be exactly 1, the behavior of the period of the limit cycle is not determined.
Grants: Agencia Estatal de Investigación PID2021-125625NB-I00
Agencia Estatal de Investigación PID2020-118281GB-C33
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-01015
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113
Agencia Estatal de Investigación CEX2020-001084-M
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Limit cycle ; Polycycle ; Cyclicity ; Period ; Asymptotic expansion ; Dulac map
Published in: Publicacions matemàtiques, Vol. 69 Núm. 2 (2025) , p. 299-318 (Articles) , ISSN 2014-4350

Adreça original: https://raco.cat/index.php/PublicacionsMatematiques/article/view/10000006089
DOI: 10.5565/PUBLMAT6922502


20 p, 567.8 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Published articles > Publicacions matemàtiques
Articles > Research articles

 Record created 2024-03-07, last modified 2025-10-12



   Favorit i Compartir