| Home > Articles > Published articles > Semiclassical quantification of some two degree of freedom potentials : |
| Date: | 2024 |
| Abstract: | In this work we explain the relevance of the Differential Galois Theory in the semiclassical (or WKB) quantification of some two degree of freedom potentials. The key point is that the semiclassical path integral quantification around a particular solution depends on the variational equation around that solution: a very well-known object in dynamical systems and variational calculus. Then, as the variational equation is a linear ordinary differential system, it is possible to apply the Differential Galois Theory to study its solvability in closed form. We obtain closed form solutions for the semiclassical quantum fluctuations around constant velocity solutions for some systems like the classical Hermite/Verhulst, Bessel, Legendre, and Lamé potentials. We remark that some of the systems studied are not integrable, in the Liouville-Arnold sense. |
| Grants: | Agencia Estatal de Investigación CEX2020-001084-M Agencia Estatal de Investigación PGC2018-098676-B-I00 Agencia Estatal de Investigación PID2021-122954NB-I00 Agencia Estatal de Investigación PID2019-104658GB-I00 |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Quantification ; Path integrals ; Propagator ; Semiclassical approximation ; Differential Galois theory ; Integrability |
| Published in: | Journal of mathematical physics, Vol. 65, Issue 1 (January 2024) , art. 012106, ISSN 1089-7658 |
Postprint 21 p, 504.3 KB |