Home > Articles > Published articles > Dynamics of a class of 3-dimensional Lotka-Volterra Systems |
Date: | 2023 |
Abstract: | We provide the complete dynamics of the Lotka-Volterra differential system x˙ = x(ay − cz), y˙ = y(bz − ax), z˙ = z(cx − by), where a, b, c are positive parameters and x, y, z are in the positive octant of R3. In particular we show that this system is completely integrable, i. e. it has two independent first integrals. Fixing one of these first integrals we obtain invariant triangles in the positive octant of R3. The dynamics of the system on each one of these invariant triangles is given by an equilibrium point surrounded by periodic orbits, i. e. by a center. In short all the orbits of these system are either equilibrium points, or periodic orbits. This nonlinear differential system models, under the conservation of mass, a cycle ofirreversible autocatalytic reactions between the different states of three macromolecules and allows to describe stable chemical oscillations. |
Grants: | Agencia Estatal de Investigación PID2019-104658GB-I00 Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617 European Commission 777911 |
Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
Language: | Anglès |
Document: | Article ; recerca ; Versió acceptada per publicar |
Subject: | Lotka-Volterra system ; Invariant ; Global dynamics ; Phase portrait |
Published in: | Dynamics of continuous, discrete and impulsive systems, Vol. 30, Issue 4 (2023) , p. 303-307, ISSN 1918-2538 |
Postprint 6 p, 248.5 KB |
The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles