Abel quadratic differential systems of second kind
Artés Ferragud, Joan Carles 
(Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Llibre, Jaume 
(Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques.)
Vulpe, Nicolae (Academy of Sciences of Moldova. Institute of Mathematics and Computer Science)
| Date: |
2024 |
| Abstract: |
The Abel differential equations of second kind, named after Niels Henrik Abel, are a class of ordinary differential equations studied by many authors. Here we consider the Abel quadratic polynomial differential equations of second kind denoting this class by QSAb. Firstly we split the whole family of non-degenerate quadratic systems in four subfamilies according to the number of infinite singularities. Secondly for each one of these four subfamilies we determine necessary and sufficient affine invariant conditions for a quadratic system in this subfamily to belong to the class QSAb. Thirdly we classify all the phase portraits in the Poincaré disc of the systems in QSAb in the case when they have at infinity either one triple singularity (21 phase portraits) or an infinite number of singularities (9 phase portraits). Moreover we determine the affine invariant criteria for the realization of each one of the 30 topologically distinct phase portraits. |
| Note: |
Altres ajuts: Real Acadèmia de Ciències i Arts de Barcelona |
| Rights: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Subject: |
Quadratic differential systems ;
Phase portraits ;
Second kind of Abel differential equations ;
Affine invariant polynomials |
| Published in: |
Electronic journal of differential equations, Vol. 2024, Issue 50 (2024) , p. 1-38, ISSN 1072-6691 |
DOI: 10.58997/ejde.2024.50
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Experimental sciences >
GSD (Dynamical systems)Articles >
Research articlesArticles >
Published articles
Record created 2025-02-07, last modified 2025-03-09