| Home > Articles > Published articles > On the Number of Limit Cycles for Piecewise Polynomial Holomorphic Systems |
| Date: | 2024 |
| Abstract: | In this paper, we are concerned with determining lower bounds of the number of limit cycles for piecewise polynomial holomorphic systems with a straight line of discontinuity. We approach this problem with different points of view. Initially, we study the number of zeros of the first- and second-order averaging functions. We also use the Lyapunov quantities to produce limit cycles appearing from a monodromic equilibrium point via a degenerated Andronov-Hopf type bifurcation, adding at the very end the sliding effects. Finally, we use the Poincaré-Miranda theorem for obtaining an explicit piecewise linear holomorphic system with 3 limit cycles, a result that improves the known examples in the literature that had a single limit cycle. |
| Grants: | Agencia Estatal de Investigación PID2019-104658GB-I00 Agencia Estatal de Investigación PID2022-136613NB-I00 Agencia Estatal de Investigación CEX2020-001084-M Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113 |
| Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Piecewise polynomial holomorphic systems ; Limit cycles ; Averaging method ; Lyapunov quantities ; Poincaré-Miranda theorem |
| Published in: | SIAM Journal on Applied Dynamical Systems, Vol. 23, Issue 3 (September 2024) , p. 2593-2622, ISSN 1536-0040 |
Postprint 30 p, 564.6 KB |