| Home > Articles > Published articles > Limit cycles in a class of planar discontinuous piecewise quadratic differential systems with a non-regular line of discontinuity (I) |
| Date: | 2025 |
| Abstract: | In this paper we study the limit cycles which bifurcate from the periodic orbits of the quadratic uniform isochronous center ẋ = -y + xy, ẏ = x + y, when this center is perturbed inside the class of all discontinuous piecewise quadratic polynomial differential systems in the plane with two pieces separated by a non-regular line of discontinuity, which is formed by two rays starting from the origin and forming an angle α = π/2. Using the Chebyshev theory we prove that the maximum number of hyperbolic limit cycles which can bifurcate from these periodic orbits is exactly 8 using the averaging theory of first order. For this class of discontinuous piecewise differential systems we obtain three more limit cycles than the line of discontinuity is regular, i. e. , the case of where the two rays form an angle α = π. |
| Grants: | Agencia Estatal de Investigación PID2022-136613NB-I00 European Commission 777911 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113 |
| Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Limit cycle ; Discontinuous piecewise polynomial system ; Quadratic uniform isochronous center ; Non-regular discontinuous boundary ; Averaging theory ; Chebyshev theory |
| Published in: | Mathematics and computers in simulation, Vol. 229 (March 2025) , p. 743-757, ISSN 0378-4754 |
Available from: 2027-03-31 Postprint |