Web of Science: 0 citations, Scopus: 0 citations, Google Scholar: citations
Final Evolutions for Lotka-Volterra Systems in R3 Having a Darboux Invariant
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Zhao, Yulin (Sun Yat-sen University. School of Mathematics)

Date: 2025
Abstract: The Lotka-Volterra systems have been studied intensively due to their applications. While the phase portraits of the 2-dimensional Lotka-Volterra systems have been classified, this is not the case for the ones in dimension three. Here we classify all the 3-dimensional Lotka-Volterra systems having a Darboux invariant of the form x1y2z3e, where λ, s ∈ R and s(λ123) ≠ 0. The existence of such kind of Darboux invariants in a differential system allow to determine the α-limits and ω-limits of all the orbits of the differential system. For this class of Lotka-Volterra systems we can describe completely their phase portraits in the Poincaré ball. As an application we illustrate with an example one of these phase portraits.
Grants: Agencia Estatal de Investigación PID2022-136613NB-I00
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113
Note: Altres ajuts: Reial Acadèmia de Ciències i Arts de Barcelona
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Lotka-Volterra systems ; Darboux invariants ; Global dynamics ; Poincare compactification
Published in: Electronic journal of differential equations, Vol. 2025, Núm. 37 (2025) , p. 1-16, ISSN 1072-6691

DOI: 10.58997/ejde.2025.37


16 p, 630.3 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles

 Record created 2025-06-11, last modified 2025-07-06



   Favorit i Compartir