| Home > Articles > Published articles > Algebraic limit cycles of planar discontinuous piecewise linear differential systems with an angular switching boundary |
| Date: | 2025 |
| Abstract: | Known results show that, with a θ-angular switching boundary for θ ∈(0, π], a planar piecewise linear differential system formed by two Hamiltonian linear sub-systems has no crossing algebraic limit cycles of type I, i. e. , those cycles crossing one of the two sides of the θ-angular switching boundary twice only, and at most two crossing algebraic limit cycles of type II, i. e. , those cycles crossing both sides of the θ-angular switching boundary once separately. In this paper, using the Chebyshev theory and Descartes' rule to overcome difficulties in applying Gröbner basis to solve polynomial systems, we study the number of crossing algebraic limit cycles for such a piecewise linear system having a Hamiltonian sub-system and a non-Hamiltonian sub-system. We prove that the maximum number of type I is one and the lower and upper bounds of the maximum number of type II are five and seven, respectively, and show the coexistence of type I and type II, which implies that a lower bound for the maximum number of all crossing algebraic limit cycles is six. |
| Grants: | Agencia Estatal de Investigación PID2022-136613NB-I00 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113 |
| Note: | Altres ajuts: Reial Acadèmia de Ciències i Arts de Barcelona |
| Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Algebraic limit cycle ; Polynomial differential systems ; Polynomial first integral ; Rational first integral |
| Published in: | Journal of mathematical analysis and applications, Vol. 546, Issue 2 (June 2025) , art. 129224, ISSN 1096-0813 |
Available from: 2027-06-30 Postprint 29 p, 593.6 KB |