Per citar aquest document: http://ddd.uab.cat/record/44049
Catalan's intervals and realizers of triangulations
Bernardi, Olivier
Bonichon, Nicolas
Centre de Recerca Matemàtica

Publicació: Centre de Recerca Matemàtica 2007
Descripció: 34 p.
Col·lecció: Prepublicacions del Centre de Recerca Matemàtica ; 747
Resum: The Stanley lattice, Tamari lattice and Kreweras lattice are three remarkable orders defined on the set of Catalan objects of a given size. These lattices are ordered by inclusion: the Stanley lattice is an extension of the Tamari lattice which is an extension of the Kreweras lattice. The Stanley order can be defined on the set of Dyck paths of size n as the relation of being above. Hence, intervals in the Stanley lattice are pairs of non-crossing Dyck paths. In a former article, the second author defined a bijection Φ between pairs of non-crossing Dyck paths and the realizers of triangulations (or Schnyder woods). We give a simpler description of the bijection Φ. Then, we study the restriction of Φ to Tamari’s and Kreweras’ intervals. We prove that Φ induces a bijection between Tamari intervals and minimal realizers. This gives a bijection between Tamari intervals and triangulations. We also prove that Φ induces a bijection between Kreweras intervals and the (unique) realizers of stack triangulations. Thus, Φ induces a bijection between Kreweras intervals and stacktriangulations which are known to be in bijection with ternary trees.
Drets: Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús Creative Commons
Llengua: Anglès.
Document: preprint
Matèria: Teoria reticular

Adreça alternativa: http://hdl.handle.net/2072/4690


34 p, 354.4 KB

El registre apareix a les col·leccions:
Documents de recerca > Prepublicacions

 Registre creat el 2009-07-13, darrera modificació el 2016-06-11



   Favorit i Compartir