To cite this record: http://ddd.uab.cat/record/52593
Detection of Masses in Digital Mammograms using K-means and Support Vector Machine
Oliveira Martins, Leonardo de
Braz Junior, Geraldo
Corrêa Silva, Aristófanes
Cardoso de Paiva, Anselmo
Gattass, Marcelo

Date: 2009
Abstract: Breast cancer is a serious public health problem in several countries. Computer Aided Detection/Diagnosis systems (CAD/CADx) have been used with relative success aiding health care professionals. The goal of such systems is contribute on the specialist task aiding in the detection of different types of cancer at an early stage. This work presents a methodology for masses detection on digitized mammograms using the K-means algorithm for image segmentation and co-occurrence matrix to describe the texture of segmented structures. Classification of these structures is accomplished through Support Vector Machines, which separate them in two groups, using shape and texture descriptors: masses and non-masses. The methodology obtained 85% of accuracy.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès.
Document: article ; recerca ; publishedVersion
Subject: Mamografia ; Detecció assistida per ordinador ; Co-ocurrència de matriu ; Mamografía ; Detección asistida por ordenador ; Co-ocurrencia de matriz ; Mammogram ; Computer-Aided Detection ; Co-occurrence matrix ; K-means ; Support Vector Machine
Published in: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, V. 8 n. 2 (2009) p. 39-50, ISSN 1577-5097



12 p, 272.3 KB

The record appears in these collections:
Articles > Published articles > ELCVIA : Electronic Letters on Computer Vision and Image Analysis

 Record created 2010-01-18, last modified 2014-06-08



   Favorit i Compartir
QR image