To cite this record: http://ddd.uab.cat/record/64520
A Robust Multi-Feature Cut Detection Algorithm for Video Segmentation
Ciocca, Gianluigi

Date: 2010
Abstract: Video segmentation is the first task in almost all video analysis applications. It consists in identifying the boundaries of the meaningful video units (shots). Without a doubt, cuts are the most common among production effects that characterize the shot boundaries. In this paper we propose an algorithm for cut detection exploiting an innovative, robust frame difference measure. The measure is based on a combination of different visual features. To improve the precision of the cut detection algorithm, a temporal pattern analysis model, and a flashes removal are also proposed. Experimental results to prove the effectiveness of the proposed measure coupled with the temporal pattern analysis model on very heterogeneous and complex sets of videos are critically reported.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès.
Document: article ; recerca ; publishedVersion
Subject: Video Segmentation ; Cut Detection ; Visual Feature Extraction ; Frame Difference Measure ; Flash Removal ; Segementación de vídeo ; Detección de corte ; Extracción visual de características ; Marco de la Medida de diferencia ; Eliminación de Flash ; Detecció de tall ; Extracció visual de característiques ; Marc de la Mesura de diferència ; Eliminació de Flash
Published in: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 9, Núm. 1 ( 2010) , p. 32-46, ISSN 1577-5097



15 p, 174.7 KB

The record appears in these collections:
Articles > Published articles > ELCVIA : Electronic Letters on Computer Vision and Image Analysis

 Record created 2010-11-24, last modified 2014-06-07



   Favorit i Compartir
QR image