A cone programming approach to the bilinear matrix inequality problem and its geometry
Mesbahi, Mehran
Papavassilopoulos, George P.

Date: 1997
Abstract: We discuss an approach for solving the Bilinear Matrix Inequality (BMI) based on its connections with certain problems defined over matrix cones. These problems are, among others, the cone generalization of the linear programming (LP) and the linear complementarity problem (LCP) (referred to as the Cone-LP and the Cone-LCP, respectively). Specifically, we show that solving a given BMI is equivalent to examining the solution set of a suitably constructed Cone-LP or Cone-LCP. This approach facilitates our understanding of the geometry of the BMI and opens up new avenues for the development of the computational procedures for its solution. .
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Bilinear matrix inequalities ; Linear complementarity problem over cones ; Linear programming over cones ; Robust control
Published in: Mathematical Programming, vol. 77 n. 2 (1997) p. 247-272, ISSN 0025-5610



26 p, 1.3 MB
 UAB restricted access

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2006-03-13, last modified 2024-12-07



   Favorit i Compartir