Web of Science: 8 citations, Scopus: 8 citations, Google Scholar: citations
Tailoring the physical properties of electrodeposited CoNiReP alloys with large Re content by direct, pulse, and reverse pulse current techniques
Pané i Vidal, Salvador (Institute of Robotics and Intelligent Systems)
Suriñach, Santiago (Suriñach Cornet) (Universitat Autònoma de Barcelona. Departament de Física)
Özkale, Berna (Institute of Robotics and Intelligent Systems)
Sivaraman, Kartik M. (Institute of Robotics and Intelligent Systems)
Ruiz-Camps, C. (Universitat Autònoma de Barcelona. Departament de Física)
Baró, M. D (Universitat Autònoma de Barcelona. Departament de Física)
Nelson, Bradley J. (Institute of Robotics and Intelligent Systems)
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)
Pellicer Vilà, Eva Maria (Universitat Autònoma de Barcelona. Departament de Física)

Date: 2013
Abstract: The composition, surface morphology and structure of CoNiReP alloy films with large Re content (up to 27 at%), obtained in a citrate-glycine based electrolyte have been studied as a function of the electrodeposition technique. Direct current (DC), pulse plating (PP) and reverse pulse plating (RPP) were considered with cathodic current densities from −50 mA cm−2 to −250 mA cm−2. The mechanical and magnetic properties have been analyzed and the data obtained has been correlated with composition and crystallographic structure. For values of j (DC), jon (PP) and jc (RPP) below −100 mA cm−2, Co-rich, P-containing deposits are obtained. Beyond these current densities, both the quantities of Ni and Re increase simultaneously at the expense of Co and P, the latter virtually falling to zero. The highest Re percentage (25-27 at%) was achieved in both PP and RPP conditions at a cathodic pulse of −250 mA cm−2. All the films were either entirely nanocrystalline in nature or partially amorphous. Hardness values as high as 9. 2 GPa have been found in PP plated Co64Ni18Re18 deposits. Besides the large hardness, the incorporation of Re in the films leads to high elastic recovery values. The magnetic character of the deposits ranges from soft to semi-hard ferromagnetic.
Grants: Ministerio de Economía y Competitividad MAT2011-27380-C02-01
Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-1292
Note: This is the author's version of a work that was accepted for publication in Electrochimica acta. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Electrochimica acta, [96,(2013)] DOI10.1016/j.electacta.2013.02.077)
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Galvanoplàstia ; Electroformació
Published in: Electrochimica acta, Vol. 96, abril 2013, p. 43-50, ISSN 1873-3859

DOI: 10.1016/j.electacta.2013.02.077


Post-print
10 p, 1.4 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Group of Smart Nanoengineered Materials, Nanomechanics and Nanomagnetism (Gnm3)
Articles > Research articles
Articles > Published articles

 Record created 2013-11-20, last modified 2023-12-11



   Favorit i Compartir