dir. (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
| Publicació: |
[Barcelona] : Universitat Autònoma de Barcelona, 2014 |
| Descripció: |
1 recurs electrònic (113 p.) |
| Resum: |
En aquesta memòria es tracten tres problemes diferents. En el Capítol 1 es construeixen dues famílies de processos que convergeixen, en el sentit de les distribucions en dimensió finita, cap a dos processos Gaussians independents. El Capítol 2 està dedicat a l'estudi d'un model de tractament amb bacteriòfags per infeccions bacterianes. Finalment, en el Capítol 3, estudiem alguns aspectes del L2 mòdul de continuïtat del temps local del Brownià. En el primer capítol considerem dos processos Gaussians independents que es poden representar en termes d'una integral estocàstica d'un nucli determinista respecte el procés de Wiener, i construïm, a partir d'un únic procés de Poisson, dues famílies de processos que convergeixen, en el sentit de les distribucions en dimensió finita, cap a aquests processos Gaussians. Utilitzarem aquest resultat per a provar resultats de convergència en llei cap a altres processos, com ara el moviment Brownià sub-fraccionari. En el Capítol 2 construïm i estudiem diferents model que pretenen estudiar el comportament d'un tractament amb bacteriòfags en certs animals de granja. Aquest problema ha estat motivat pel Grup de Biologia Molecular del Departament de Genètica i Microbiologia de la Universitat Autònoma de Barcelona. Començant per un model bàsic, n'estudiarem diferent variacions, primer des d'un punt de vista determinista, trobant diversos resultat sobre els equilibris i l'estabilitat, i després en un context amb soroll, produint resultats de concentració. Finalment, en el Capítol 3 estudiarem la descomposició en caos de Wiener del L2 mòdul de continuïtat del temps local del Brownià. Més concretament, trobarem un Teorema Central del Límit per a cada element del caos de Wiener del L2 mòdul de continuïtat del temps local del Brownià. Aquest resultat ens proporciona un exemple d'una família de variables que convergeix en llei cap a una distribució Normal, però que els elements del seu caos d'ordre parell no convergeixen. |
| Resum: |
In this dissertation three different problems are treated. In Chapter 1 we construct two families of processes that converge, in the sense of the finite dimensional distributions, towards two independent Gaussian processes. Chapter 2 is devoted to the study of a model of bacteriophage treatments for bacterial infections. Finally, in Chapter 3 we study some aspects of the L2 modulus of continuity of Brownian local time. In the first chapter we consider two independent Gaussian processes that can be represented in terms of a stochastic integral of a deterministic kernel with respect to the Wiener process and we construct, from a single Poisson process, two families of processes that converge, in the sense of the finite dimensional distributions, towards these Gaussian processes. We will use this result to prove convergence in law results towards some other processes, like sub-fractional Brownian motion. In Chapter 2 we construct and study several models that pretend to study how will behave a treatment of bateriophages in some farm animals. This problem has been brought to our attention by the Molecular Biology Group of the Department of Genetics and Microbiology at the Universitat Autònoma de Barcelona. Starting from a basic model, we will study several variations, first from a deterministic point of view, finding several results on equilibria and stability, and later in a noisy context, producing concentration type results. Finally, in Chapter 3 we shall study the decomposition on Wiener chaos of the L2 modulus of continuity of the Brownian local time. More precisely, we shall find a Central Limit Theorem for each Wiener chaos element of the L2 modulus of continuity of the Brownian local time. This result provides us with an example of a family of random variables that is convergent in law to a Normal distribution, but its chaos elements of even order do not converge. |
| Nota: |
Tesi doctoral - Universitat Autònoma de Barcelona. Departament de Matemàtiques, 2013 |
| Drets: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Llengua: |
Anglès |
| Document: |
Tesi doctoral |
| Matèria: |
Processos gaussians ;
Anàlisi estocàstica ;
Models biològics ;
Distribucions, Teoria de les (Anàlisi funcional) ;
Moviment brownià, Processos de |
| ISBN: |
9788449040535 |