Web of Science: 31 citations, Scopus: 33 citations, Google Scholar: citations,
A Survey on Model Based Approaches for 2D and 3D Visual Human Pose Recovery
Perez Sala, Xavier (Universitat Politècnica de Catalunya)
Escalera, Sergio (Universitat de Barcelona. Departament de Matemàtiques)
Angulo, Cecilio (Universitat Politècnica de Catalunya)
Gonzàlez i Sabaté, Jordi (Universitat Autònoma de Barcelona. Departament de Ciències de la Computació)

Date: 2014
Abstract: Human Pose Recovery has been studied in the field of Computer Vision forthe last 40 years. Several approaches have been reported, and significant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we define a general taxonomy to group model based approaches for Human.
Abstract: Pose Recovery, which is composed of five main modules: appearance, viewpoint, spatial relations, temporal consistence, and behavior. Subsequently, a methodological comparison is performed following the proposed taxonomy, evaluating current SoA approaches in the aforementioned five group categories. As a result of this comparison, we discuss the main advantages and drawbacks of the reviewed literature.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Human pose recovery ; Human body modelling ; Behavior analysis ; Computer vision
Published in: Sensors, Vol. 14 (2014) , p. 4189-4210, ISSN 1424-8220

DOI: 10.3390/s140304189
PMID: 24594613

22 p, 843.0 KB

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2016-02-23, last modified 2021-08-15

   Favorit i Compartir