Web of Science: 2 citas, Scopus: 3 citas, Google Scholar: citas
The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node (A,B)
Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Rezende, Alex C. (Universitat Autònoma de Barcelona. Departament de Matemàtiques)

Fecha: 2014
Resumen: Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, Hilbert, 1902], are still open for this family. Our aim is to make a global study of the family QsnSN which is the closure within real quadratic differential systems of the family QsnSN of all such systems which have two semi-elemental saddle-nodes, one finite and one infinite formed by the collision of two infinite singular points. This family can be divided into three different subfamilies, all of them with the finite saddle-node at the origin of the plane with the eigenvectors on the axes and (A) with the infinite saddle-node in the horizontal axis, (B) with the infinite saddle-node in the vertical axis and (C) with the infinite saddle-node in the bisector of the first and third quadrants. These three subfamilies modulo the action of the affine group and time homotheties are three-dimensional (the closure is four-dimensional) and we give their bifurcation diagram with respect to a normal form. In this paper we provide the complete study of the geometry of the first two families, (A) and (B). The bifurcation diagram for the subfamily (A) yields 38 phase portraits for systems in QsnSN(A) (29 in QsnSN(A)) out of which only 3 have limit cycles and 13 possess graphics. The bifurcation diagram for the subfamily (B) yields 25 phase portraits for systems in QsnSN(B) (16 in QsnSN(B)) out of which 11 possess graphics. None of the 25 portraits has limit cycles. Case (C) will yield many more phase portraits and will be written separately in a forthcoming new paper. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set of QsnSN(A) is formed by algebraic surfaces and one surface whose presence was detected numerically. All points in this surface correspond to connections of separatrices. The bifurcation set of QsnSN(B) is formed only by algebraic surfaces.
Nota: Agraïments: the second author is supported by CAPES/DGU grant number BEX 9439/12-9 and the last author is partially supported by CAPES/DGU grant number 222/2010.
Nota: Número d'acord de subvenció MICINN/MTM 2008-03437
Nota: Número d'acord de subvenció AGAUR/2005/SGR-550
Nota: Número d'acord de subvenció EC/FP7/2012/316338
Derechos: Tots els drets reservats.
Lengua: Anglès
Documento: article ; recerca ; acceptedVersion
Materia: Algebraic invariants ; Bifurcation diagram ; Phase portrait ; Quadratic vector fields
Publicado en: International journal of bifurcation and chaos in applied sciences and engineering, Vol. 24 Núm. 4 (2014) , p. 1450044 (30 pages), ISSN 1793-6551

DOI: 10.1142/S0218127414500448


Postprint
33 p, 583.3 KB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > GSD (Grupo de sistemas dinámicos)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2016-05-06, última modificación el 2020-08-16



   Favorit i Compartir