Development of integrated plasmomechanical sensors in microfluidic devices for live cell analysis / Verónica Iraís Solís Tinoco ; Prof. Laura M. Lechuga, director, Dr. Borja Sepúlveda Martínez, director ; David Jiménez Jiménez, tutor
Solís Tinoco, Verónica Iraís
Lechuga, Laura, dir.
Sepúlveda, Borja, dir.
Jiménez Jiménez, David, dir. (Universitat Autònoma de Barcelona. Departament d'Enginyeria Electrònica)
Universitat Autònoma de Barcelona. Departament d'Enginyeria Electrònica

Imprint: [Barcelona] : Universitat Autònoma de Barcelona, 2016
Description: 1 recurs en línia (167 pàgines)
Abstract: Esta Tesis doctoral se centra en el diseño, estudio y optimización de una metodología controlada para la fabricación de un sensor flexible y plasmo-mecánico integrado con microfluídica, así como en su caracterización óptica y mecánica. Estamos interesados en el uso de este sensor para estudiar las fuerzas de tracción de las células por su papel esencial en las funciones celulares (por ejemplo, adhesión, supervivencia, migración, proliferación y diferenciación) y en el desarrollo de tejidos. Hoy en día, la monitorización y cuantificación de las fuerzas de tracción son uno de los desafíos que enfrenta la biología celular. Utilizamos las ventajas de los materiales poliméricos y las técnicas de nano-fabricación para crear un nuevo prototipo de sensor flexible de bajo coste y a gran escala. El sensor está formado por un arreglo hexagonal de nanopilares de polímero con nanodiscos plasmónicos de oro en su parte superior, ubicados dentro de un canal microfluídico. La fabricación del sensor se basa en las técnicas de réplica de estructuras. El diámetro, la altura y separación de los nanopilares están diseñados para ser copiados utilizando polímeros con un módulo de Young diferente, y de esta forma controlar su flexibilidad. Los discos plasmónicos de oro son depositados sobre los nanopilares utilizando evaporación de metales. Finalmente, la construcción del sensor integrado con microfluídica se basa en una estrategia de sellado permanente. La transducción utiliza la combinación de la flexibilidad mecánica de los nanopilares de polímeros con las propiedades ópticas de los nanodiscos de oro que presentan una resonancia de plasmón superficial localizada (LSPR). Los resultados obtenidos en esta Tesis sugieren que la combinación de la flexibilidad mecánica de los nanopilares de polímero con las propiedades ópticas de los nanodiscos de oro, permiten la monitorización de los cambios del índice de refracción del medio exterior. Las propiedades mecánicas (por ejemplo, la constante elástica) pueden utilizarse para controlar la estabilidad mecánica de las estructuras de polímero y para imitar las propiedades mecánicas de tejidos blandos o duros. Se llevó a cabo un análisis preliminar de un cultivo celular sobre los nanopilares como una prueba de concepto, para conocer las ventajas y los límites del nuevo sensor diseñado y del sistema de detección óptica. Los resultados mostraron que las células vivas pudieron adherirse e interactuar con los nanodiscos plasmónicos de los nanopilares con diferente rigidez, induciendo cambios detectables en el LSPR. El trabajo en esta Tesis representa un paso significativo hacia la implementación de nuevos sensores más eficaces para ser empleados en estudios básicos de biología celular, que podrían desempeñar un papel importante en la comprensión de procesos biológicos esenciales.
Abstract: This doctoral Thesis focuses on the design, study, and optimization of the controlled fabrication metodology of a flexible plasmo-mechanical sensor with microfluidics, as well as its optical and mechanical characterization. We are interested in the use of this sensor to study cell traction forces for its essential role in cell functions (e. g. , adhesion, survival, migration, proliferation, and differentiation) and tissue development. Nowadays, the monitoring and quantification of those traction forces are one of the challenges faced by cell biology. We take advantage of the use of polymeric materials, and low-cost and large-scale nanofabrication techniques to create the new prototype sensor. The sensor is formed by a hexagonal array of polymeric nanopillars capped with plasmonic gold nanodisks into a microfluidic channel. The main strategy for the fabrication of the sensor is based on replica molding techniques. The diameter, height, and separation of the nanopillars are designed in order to replicate the structures using polymers with different Young's modulus, and to control their mechanical flexibility. The plasmonic gold nanodisks are deposited on top of the nanopillars by controlled metal evaporation. Finally, the building of the integrated microfluidic sensor is based on a permanent bonding strategy. The transduction is based on combining the mechanical flexibility of the nanopillars with the optical properties of the gold nanodisks that exhibit localized surface plasmon resonances (LSPR). The results suggest that the combination of the mechanical flexibility of the polymer nanopillars with the optical properties of the gold nanodisks allow the monitoring of refractive index changes in the environment. The mechanical properties (e. g. , spring constant) can be used to control the mechanical stability of the polymer structures, and also to mimic the mechanical properties of soft or rigid tissues. A preliminary analysis of cell culture onto the nanopillar array was carried out as a proof-of-concept to know the advantages and the limits of the new sensor design and the optical detection system. The results showed that the living cells could adhere and interact with the Au-capped nanopillars with different rigidity, inducing detectable LSPR changes. The work in this Thesis represents a significant step towards the implementation of novel and more efficient sensors for the study of cell biology, which could play a key role in the understanding of essential biological processes.
Note: Bibliografia
Note: Tesi. Doctorat. Universitat Autònoma de Barcelona. Departament d'Enginyeria Electrònica. 2016
Rights: L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons Creative Commons
Language: Anglès
Document: Tesis i dissertacions electròniques ; doctoralThesis ; publishedVersion
Subject: Sensors ; Nanotecnologia ; Microfluídica ; Biologia cel·lular
ISBN: 9788449069437

Adreça alternativa: https://hdl.handle.net/10803/399994


168 p, 7.7 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Research literature > Doctoral theses

 Record created 2017-06-05, last modified 2021-03-02



   Favorit i Compartir