Scopus: 0 cites, Google Scholar: cites
Robust Real-Time Gradient-based Eye Detection and Tracking Using Transform Domain and PSO-Based Feature Selection
Salehi, Nasrin (Isfahan University (Iran). Department of Artificial Intelligence)
Keyvanara, Maryam (Isfahan University (Iran). Department of Artificial Intelligence)
Monadjemi, Amirhassan (Isfahan University (Iran). Department of Artificial Intelligence)

Data: 2017
Resum: Despite numerous research on eye detection and tracking, this field of study remains challenging due to the individuality of eyes, occlusion, and variability in scale, location, and light conditions. This paper combines a techniques of feature extraction and a feature selection method to achieve a significant increase in eye recognition. Subspace methods may improve detection efficiency and accuracy of eye centers detection using dimensionality reduction. In this study, HoG descriptor is used to lay the ground for BPSO based feature selection. Histogram of Oriented Gradient (HoG) features are used for efficient extraction of pose, translation and illumination invariant features. HoG descriptors uses the fact that local object appearance and shape within an image can be described by the distribution of intensity gradients or edge directions. The method upholds invariance to geometric and photometric transformations. The performance of presented method is evaluated using several benchmark datasets, namely, BioID and RS-DMV. Experimental results obtained by applying the proposed algorithm on BioID dataset show that the proposed system outperforms other eye recognition systems. A significant increase in the recognition rate is achieved when using the combination of HoG descriptor, BPSO, and SVM for feature extraction, feature selection and training phase respectively. The Recognition rate for BioID dataset was 99. 6% and the detection time was 15. 24 msec for every single frame.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès.
Document: article ; recerca ; publishedVersion
Matèria: Eye detection and tracking ; HoG descriptor ; BPSO feature selection ; SVM classifier
Publicat a: ELCVIA : Electronic Letters on Computer Vision and Image Analysis, Vol. 16 Núm. 1 (2017) , p. 15-32 (Regular Issue) , ISSN 1577-5097

Adreça original:
Adreça alternativa:
DOI: 10.5565/rev/elcvia.811

18 p, 1.2 MB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA
Articles > Articles de recerca

 Registre creat el 2017-07-03, darrera modificació el 2018-11-03

   Favorit i Compartir