Web of Science: 33 citations, Scopus: 46 citations, Google Scholar: citations,
A global method for calculating plant CSR ecological strategies applied across biomes world-wide
Pierce, Simon (Università degli Studi di Milano. Dipartimento di Scienze Agrarie e Ambientali)
Negreiros, Daniel (Universidade Federal de Minas Gerais)
Cerabolini, Bruno E. L. (Università degli Studi dell’Insubria. Dipartimento di Scienze Teoriche e Applicate)
Kattge, Jens (Max Planck Institute for Biogeochemistry)
Díaz, Sandra (Universidad Nacional de Córdoba e IMBIV-CONICET (Instituto Multidisciplinario de Investigaciones Científicas y Técnicas))
Kleyer, Michael (Oldenburg Universität. Fachbereich Biologie, Erd- und Umweltwissenschaften)
Shipley, Bill (Université de Sherbrooke. Département de Biologie)
Wright, Stuart Joseph (Smithsonian Tropical Research Institute (Panamà))
Soudzilovskaia, Nadejda A. (Universiteit Leiden. Centrum voor Milieuwetenschappen)
Onipchenko, Vladimir G. (Moskovskiĭ gosudarstvennyĭ universitet im. M. V. Lomonosova)
Van Bodegom, Peter (Rijksuniversiteit te Leiden. Centrum voor Milieuwetenschappen)
Frenette-Dussault, Cedric (Université de Sherbrooke. Département de Biologie)
Weiher, Evan (University of Wisconsin. Department of Biology)
Pinho, Bruno X. (Universidade Federal de Pernambuco. Departamento de Botânica)
Cornelissen, Johannes H. C. (Vrije Universiteit Amsterdam. Deptartment of Ecological Science)
Grime, John Philip (University of Sheffield. Department of Animal and Plant Sciences)
Thompson, Ken (University of Sheffield. Department of Animal and Plant Sciences)
Hunt, Roderick (University of Exeter (Gran Bretanya). College of Life and Environmental Sciences)
Wilson, Peter J. (University of Sheffield. Department of Animal and Plant Sciences)
Buffa, Gabriella (Università Ca'Foscari Venezia. Dipartimento di Scienze Ambientali, Informatica e Statistica)
Nyakunga, Oliver C. (Università Ca'Foscari Venezia. Dipartimento di Scienze Ambientali, Informatica e Statistica)
Reich, Peter B. (University of Minnesota. Department of Forest Resources)
Caccianiga, Marco (Università degli Studi di Milano. Dipartimento di Bioscienze)
Mangili, Federico (Università degli Studi di Milano. Dipartimento di Bioscienze)
Ceriani, Roberta M. (Centro Flora Autoctona)
Luzzaro, Alessandra (Università degli Studi di Milano. Dipartimento di Scienze Agrarie e Ambientali)
Brusa, Guido (Università degli Studi dell’Insubria. Dipartimento di Scienze Teoriche e Applicate)
Siefert, Andrew (University of California, Department of Evolution and Ecology)
Barbosa, Newton P. U. (Universidade Federal de Minas Gerais)
III, Francis Stuart Chapin (University of Alaska Fairbanks. Department of Biology and Wildlife)
Cornwell, William K. (University of New South Wales. School of Biological, Earth and Environmental Sciences)
Jingyun, Fang (Zhongguo ke xue yuan. Institute of Botany)
Fernandes, Geraldo Wilson (Universidade Federal de Minas Gerais)
Garnier, Eric (Centre national de la recherche scientifique (França). Centre d’Écologie Fonctionnelle et Évolutive)
Le Stradic, Soizig (Université de Liège (Bèlgica). Gembloux Agro-Bio Tech)
Melo, Felipe P. L. (Universidade Federal de Pernambuco. Departamento de Botânica)
Slaviero, Antonio (Università Ca'Foscari Venezia. Dipartimento di Scienze Ambientali, Informatica e Statistica)
Tabarelli, Marcelo (Universidade Federal de Pernambuco. Departamento de Botânica)
Tampucci, Duccio (Università degli Studi di Milano. Dipartimento di Bioscienze)
Peñuelas, Josep (Universitat Autònoma de Barcelona. Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia)

Date: 2017
Abstract: 1. Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. - 2. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world-wide. - 3. Due to disparity in trait availability globally, co-inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole-plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth-corner and RLQ analyses to determine strategy/climate specializations. - 4. Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used. - 5. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i. e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS-selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S-selected (C:S:R = 1:99:0%) and broadly R-selected annual herbs (e. g. Claytonia perfoliata; R/CR-selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e. g. trees) but not others (forbs). - 6. The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.
Note: Agraïments: The study has been supported by the TRY initiative on plant traits (www.try-db.org). The TRY initiative and database is hosted, developed and maintained by J. Kattge and G. Bönisch (Max-Planck-Institute for Biogeochemistry, Jena, Germany). TRY is/has been supported by DIVERSITAS, IGBP, the Global Land Project, the UK Natural Environment Research Council (NERC) through its program QUEST (Quantifying and Understanding the Earth System), the French Foundation for Biodiversity Research (FRB), and GIS "Climat, Environnement et Société" France. We thank Daniel Laughlin, Frédérique Louault, Belinda Medlyn, Julie Messier, Juli Pausas and Ian Wright for contributing data. The authors declare no conflict of interest.
Rights: Tots els drets reservats
Language: Anglès.
Document: article ; recerca ; acceptedVersion
Subject: Community assembly ; Comparative ecology ; Grime's CSR triangle ; Plant economics spectrum ; Plant functional type ; Survival strategy ; Universal adaptive strategy theory
Published in: Functional ecology, Vol. 31, issue 2 (Feb. 2017) , p. 444-457, ISSN 0269-8463

DOI: 10.1111/1365-2435.12722


Post-print
36 p, 1.6 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Articles > Research articles
Articles > Published articles

 Record created 2017-10-24, last modified 2019-02-02



   Favorit i Compartir