Fecha: |
2002 |
Resumen: |
In this paper we study the Sobolev trace embedding W1,p([omega]) -->LpV ([delta omega]), where V is an indefinite weight. This embedding leads to a nonlinear eigenvalue problem where the eigenvalue appears at the (nonlinear) boundary condition. We prove that there exists a sequence of variational eigenvalues [lambda]k --> +[infinity] and then show that the first eigenvalue is isolated, simple and monotone with respect to the weight. Then we prove a nonexistence result related to the first eigenvalue and we end this article with the study of the second eigenvalue proving that it coincides with the second variational eigenvalue. |
Derechos: |
Tots els drets reservats. |
Lengua: |
Anglès |
Documento: |
Article ; recerca ; Versió publicada |
Publicado en: |
Publicacions matemàtiques, V. 46 N. 1 (2002) , p. 221-235, ISSN 2014-4350 |