Web of Science: 0 citas, Scopus: 0 citas, Google Scholar: citas
On Bregman-type distances for convex functions and maximally monotone operators
Burachik, Regina S. (University of South Australia. School of Information Technology and Mathematical Sciences)
Martínez Legaz, Juan Enrique (Universitat Autònoma de Barcelona. Departament d'Economia i d'Història Econòmica)

Fecha: 2018
Resumen: Given two point to set operators, one of which is maximally monotone, we introduce a new distance in their graphs. This new concept reduces to the classical Bregman distance when both operators are the gradient of a convex function. We study the properties of this new distance and establish its continuity properties. We derive its formula for some particular cases, including the case in which both operators are linear monotone and continuous. We also characterize all bi-functions D for which there exists a convex function h such that D is the Bregman distance induced by h.
Nota: Número d'acord de subvenció MINECO/MTM2014-59179- C2-2-P
Nota: Número d'acord de subvenció MINECO/SEV-2015-0563
Derechos: Tots els drets reservats
Lengua: Anglès.
Documento: article ; recerca ; acceptedVersion
Materia: Maximally monotone operators ; Bregman distances ; Banach spaces ; Representable operators ; Fitzpatrick functions ; Convex functions ; Variational inequalities
Publicado en: Set-Valued and Variational Analysis, Vol. 26, Núm. 2 (2018) , p. 369-384, ISSN 1877-0541

DOI: 10.1007/s11228-017-0443-6


Postprint
19 p, 403.2 KB

El registro aparece en las colecciones:
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2018-11-06, última modificación el 2019-09-03



   Favorit i Compartir