On Bregman-type distances for convex functions and maximally monotone operators
Burachik, Regina 
(University of South Australia. School of Information Technology and Mathematical Sciences)
Martínez Legaz, Juan Enrique 
(Universitat Autònoma de Barcelona. Departament d'Economia i d'Història Econòmica)
| Data: |
2018 |
| Resum: |
Given two point to set operators, one of which is maximally monotone, we introduce a new distance in their graphs. This new concept reduces to the classical Bregman distance when both operators are the gradient of a convex function. We study the properties of this new distance and establish its continuity properties. We derive its formula for some particular cases, including the case in which both operators are linear monotone and continuous. We also characterize all bi-functions D for which there exists a convex function h such that D is the Bregman distance induced by h. |
| Ajuts: |
Ministerio de Economía y Competitividad MTM2014-59179-C2-2-P Ministerio de Economía y Competitividad SEV-2015-0563
|
| Drets: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Llengua: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Matèria: |
Maximally monotone operators ;
Bregman distances ;
Banach spaces ;
Representable operators ;
Fitzpatrick functions ;
Convex functions ;
Variational inequalities |
| Publicat a: |
Set-Valued and Variational Analysis, Vol. 26, Núm. 2 (2018) , p. 369-384, ISSN 1877-0541 |
DOI: 10.1007/s11228-017-0443-6
El registre apareix a les col·leccions:
Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2018-11-06, darrera modificació el 2025-06-21