| Home > Articles > Published articles > Multilevel split regression wavelet analysis for lossless compression of remote sensing data |
| Date: | 2018 |
| Abstract: | Spectral redundancy is a key element to be exploited in compression of remote sensing data. Combined with an entropy encoder, it can achieve competitive lossless coding performance. One of the latest techniques to decorrelate the spectral signal is the regression wavelet analysis (RWA). RWA applies a wavelet transform in the spectral domain and estimates the detail coeffi- cients through the approximation coefficients using linear regres- sion. RWA was originally coupled with JPEG 2000. This letter introduces a novel coding approach, where RWA is coupled with the predictor of CCSDS-123. 0-B-1 standard and a lightweight contextual arithmetic coder. In addition, we also propose a smart strategy to select the number of RWA decomposition levels that maximize the coding performance. Experimental results indicate that, on average, the obtained coding gains vary between 0. 1 and 1. 35 bits-per-pixel-per-component compared with the other state- of-the-art coding techniques. |
| Grants: | Ministerio de Economía y Competitividad TIN2015-71126-R Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-463 |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Lossless coding ; Predictive coding ; Spectral decorrelation |
| Published in: | IEEE geoscience and remote sensing letters, Vol. 15 issue 10 (Oct. 2018) , p. 1540-1544, ISSN 1545-598X |
Postprint 6 p, 344.1 KB |