Web of Science: 8 citations, Scopus: 8 citations, Google Scholar: citations,
Radiometric correction of simultaneously acquired Landsat-7/Landsat-8 and Sentinel-2A imagery using Pseudoinvariant Areas (PIA) : Contributing to the Landsat time series legacy
Padró Garcia, Joan-Cristian (Universitat Autònoma de Barcelona. Departament de Geografia)
Pons, Xavier (Universitat Autònoma de Barcelona. Departament de Geografia)
Aragonés, David (Estación Biológica de Doñana)
Díaz-Delgado, Ricardo (Estación Biológica de Doñana)
García, Diego (Estación Biológica de Doñana)
Bustamante, Javier (Estación Biológica de Doñana)
Pesquer Mayos, Lluís (Centre de Recerca Ecològica i Aplicacions Forestals)
Domingo Marimon, Cristina (Centre de Recerca Ecològica i Aplicacions Forestals)
González Guerrero, Óscar (Universitat Autònoma de Barcelona. Departament de Geografia)
Cristóbal Rosselló, Jordi (University of Alaska Fairbanks)
Doktor, Daniel (Helmholtz Centre for Environmental Research-UFZ)
Lange, Maximilian (Helmholtz Centre for Environmental Research-UFZ)

Date: 2017
Abstract: The use of Pseudoinvariant Areas (PIA) makes it possible to carry out a reasonably robust and automatic radiometric correction for long time series of remote sensing imagery, as shown in previous studies for large data sets of Landsat MSS, TM, and ETM+ imagery. In addition, they can be employed to obtain more coherence among remote sensing data from different sensors. The present work validates the use of PIA for the radiometric correction of pairs of images acquired almost simultaneously (Landsat-7 (ETM+) or Landsat-8 (OLI) and Sentinel-2A (MSI)). Four pairs of images from a region in SW Spain, corresponding to four different dates, together with field spectroradiometry measurements collected at the time of satellite overpass were used to evaluate a PIA-based radiometric correction. The results show a high coherence between sensors (r = 0. 964) and excellent correlations to in-situ data for the MiraMon implementation (r > 0. 9). Other methodological alternatives, ATCOR3 (ETM+, OLI, MSI), SAC-QGIS (ETM+, OLI, MSI), 6S-LEDAPS (ETM+), 6S-LaSRC (OLI), and Sen2Cor-SNAP (MSI), were also evaluated. Almost all of them, except for SAC-QGIS, provided similar results to the proposed PIA-based approach. Moreover, as the PIA-based approach can be applied to almost any image (even to images lacking of extra atmospheric information), it can also be used to solve the robust integration of data from new platforms, such as Landsat-8 or Sentinel-2, to enrich global data acquired since 1972 in the Landsat program. It thus contributes to the program's continuity, a goal of great interest for the environmental, scientific, and technical community.
Note: Altres ajuts: FI-DGR/2016B_00410
Note: Número d'acord de subvenció EC/H2020/641762
Note: Número d'acord de subvenció MINECO/CGL2015-69888-P
Note: Número d'acord de subvenció AGAUR/2014/SGR-1491
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès.
Document: article ; recerca ; publishedVersion
Subject: Radiometric correction ; Landsat-7 ; Landsat-8 ; Sentinel-2A ; Landsat Legacy ; Field spectroradiometry ; Pseudoinvariant areas (PIA)
Published in: Remote Sensing, Vol. 9, Issue 12 (December 2017) , art. 1319, ISSN 2072-4292

DOI: 10.3390/rs9121319

26 p, 20.7 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > Grupo de Investigación Métodos y Aplicaciones en Teledetección y Sistemas de Información Geográfica (GRUMETS)
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Articles > Research articles
Articles > Published articles

 Record created 2019-01-30, last modified 2019-04-08

   Favorit i Compartir