Web of Science: 4 citations, Scopus: 5 citations, Google Scholar: citations,
Post-editing neural machine translation versus translation memory segments
Sánchez-Gijón, Pilar (Universitat Autònoma de Barcelona)
Moorkens, Joss (Dublin City University)
Way, Andy (Dublin City University)

Date: 2019
Abstract: The use of neural machine translation (NMT) in a professional scenario implies a number of challenges despite growing evidence that, in language combinations such as English to Spanish, NMT output quality has already outperformed statistical machine translation in terms of automatic metric scores. This article presents the result of an empirical test that aims to shed light on the differences between NMT postediting and translation with the aid of a translation memory (TM). The results show that NMT postediting involves less editing than TM segments, but this editing appears to take more time, with the consequence that NMT post-editing does not seem to improve productivity as may have been expected. This might be due to the fact that NMT segments show a higher variability in terms of quality and time invested in post-editing than TM segments that are 'more similar' on average. Finally, results show that translators who perceive that NMT boosts their productivity actually performed faster than those who perceive that NMT slows them down.
Rights: Tots els drets reservats.
Language: Anglès
Document: article ; recerca ; acceptedVersion
Subject: Neural machine translation ; Translation memory ; Translation quality perception ; MT acceptance ; Translation productivity
Published in: Machine translation, 2019, p. 1-29, ISSN 0922-6567

DOI: 10.1007/s10590-019-09232-x


Post-print
74 p, 7.7 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Arts and Humanities > Grup de recerca Tradumàtica
Articles > Research articles
Articles > Published articles

 Record created 2019-04-09, last modified 2020-08-08



   Favorit i Compartir