| Fecha: |
2005 |
| Resumen: |
In this paper, we prove the existence and uniqueness of the continuous Green function G for the elliptic operator L = div(A(x)∇x)+B(x)·∇x with singular drift term B on a C1,1 bounded domain D in Rn, n ≥ 3, and its comparability to the Green function G0 of L0 = div(A(x)∇x). Basing on this result we establish the equivalence of the L-harmonic measure and the surface measure on ∂D. These results extend some first ones proved for elliptic operators with less singular drift terms. |
| Derechos: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Lengua: |
Anglès |
| Documento: |
Article ; recerca ; Versió publicada |
| Materia: |
Elliptic operator ;
Drift term ;
Green function ;
Poisson kernel ;
Harmonic measure ;
Kato class |
| Publicado en: |
Publicacions matemàtiques, V. 49 N. 1 (2005) , p. 159-177, ISSN 2014-4350 |