Data: |
2005 |
Resum: |
In this paper, we prove the existence and uniqueness of the continuous Green function G for the elliptic operator L = div(A(x)∇x)+B(x)·∇x with singular drift term B on a C1,1 bounded domain D in Rn, n ≥ 3, and its comparability to the Green function G0 of L0 = div(A(x)∇x). Basing on this result we establish the equivalence of the L-harmonic measure and the surface measure on ∂D. These results extend some first ones proved for elliptic operators with less singular drift terms. |
Drets: |
Tots els drets reservats. |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió publicada |
Matèria: |
Elliptic operator ;
Drift term ;
Green function ;
Poisson kernel ;
Harmonic measure ;
Kato class |
Publicat a: |
Publicacions matemàtiques, V. 49 N. 1 (2005) , p. 159-177, ISSN 2014-4350 |