2023-07-20 06:18 |
|
2023-07-20 06:18 |
40 p, 527.5 KB |
Real forms of some Gizatullin surfaces and Koras-Russell threefolds
/
Blanc, Jérémy (Universität Basel. Departement Mathematik und Informatik) ;
Bot, Anna (Universität Basel. Departement Mathematik und Informatik) ;
Poloni, Pierre-Marie (Universität Basel. Departement Mathematik und Informatik)
We describe the real forms of Gizatullin surfaces of the form xy = p(z) and of Koras-Russell threefolds of the first kind. The former admit zero, two, three, four, or six isomorphism classes of real forms, depending on the degree and the symmetries of the polynomial p. [...]
2023 - 10.5565/PUBLMAT6722314
Publicacions matemàtiques, Vol. 67 Núm. 2 (2023) , p. 851-890 (Articles)
|
|
2023-07-20 06:18 |
|
2023-07-20 06:18 |
|
2023-07-20 06:18 |
50 p, 590.0 KB |
An explicit formula for the second moment of Maass form symmetric square L-functions
/
Balkanova, Olga (Steklov Mathematical Institute (Moscou, Rússia)) ;
Frolenkov, Dmitry (Steklov Mathematical Institute (Moscou, Rússia))
We prove an explicit formula for the second moment of symmetric square L-functions associated to Maass forms for the full modular group. In particular, we show how to express the considered second moment in terms of dual second moments of symmetric square L-functions associated to Maass cusp forms of levels 4, 16, and 64.
2023 - 10.5565/PUBLMAT6722306
Publicacions matemàtiques, Vol. 67 Núm. 2 (2023) , p. 611-660 (Articles)
|
|
2023-07-20 06:18 |
32 p, 706.4 KB |
An α-number characterization of Lp spaces on uniformly rectifiable sets
/
Azzam, Jonas (University of Edinburgh. School of Mathematics) ;
Dąbrowski, Damian (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We give a characterization of Lp(σ) for uniformly rectifiable measures σ using Tolsa's α-numbers, by showing, for 1 < p < ∞ and f ∈ Lp(σ), that kfkLp(σ) ∼Z ∞0(αfσ(x, r) + |f|x,rασ(x, r))2drr12Lp(σ).
2023 - 10.5565/PUBLMAT6722313
Publicacions matemàtiques, Vol. 67 Núm. 2 (2023) , p. 819-850 (Articles)
|
|
2023-07-20 06:17 |
27 p, 372.3 KB |
Strong exchange rings
/
Cortes-Izurdiaga, Manuel (Universidad de Málaga. Departamento de Matemática Aplicada) ;
Guil Asensio, Pedro A. (Universidad de Murcia. Departamento de Matemáticas)
Two elements a, b in a ring R form a right coprime pair, written ha, bi, if aR + bR = R. Right coprime pairs have shown to be quite useful in the study of left cotorsion or exchange rings. In this paper, we define the class of right strong exchange rings in terms of descending chains of them. [...]
2023 - 10.5565/PUBLMAT6722303
Publicacions matemàtiques, Vol. 67 Núm. 2 (2023) , p. 541-567 (Articles)
|
|
2023-07-20 06:17 |
|
2023-07-20 06:17 |
|
2023-07-20 06:17 |
|
|
|