| Home > Articles > Published articles > Overconvergent quaternionic forms and anticyclotomic p-adic L-functions |
| Date: | 2019 |
| Abstract: | We reinterpret the explicit construction of Gross points given by Chida-Hsieh as a non-Archimedian analogue of the standard geodesic cycle (i∞)-(0) on the Poincaré upper half plane. This analogy allows us to consider certain distributions, which can be regarded as anticyclotomic p-adic L-functions for modular forms of non-critical slope following the overconvergent strategy à la Stevens. We also give a geometric interpretation of their Gross points for the case of weight two forms. Our construction generalizes those of Bertolini-Darmon, Bertolini-Darmon-Iovita-Spiess,-and Chida-Hsieh and shows a certain integrality of the interpolation formula even for non-ordinary forms. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió publicada |
| Subject: | Iwasawa theory ; P-adic l-functions ; Gross points ; Quaternion algebras ; Automorphic forms |
| Published in: | Publicacions matemàtiques, Vol. 63 Núm. 2 (2019) , p. 727-767 (Articles) , ISSN 2014-4350 |
41 p, 668.2 KB |