Self-Arranged Misfit Dislocation Network Formation upon Strain Release in La0.7Sr0.3MnO3/LaAlO3(100) Epitaxial Films under Compressive Strain
Santiso, José 
(Institut Català de Nanociència i Nanotecnologia)
Roqueta, Jaume (Institut Català de Nanociència i Nanotecnologia)
Bagués Salgueró, Núria 
(Institut Català de Nanociència i Nanotecnologia)
Frontera, Carlos 
(Institut de Ciència de Materials de Barcelona)
Konstantinović, Zorica (University of Belgrade. Center for Solid State Physics and New Materials)
Lu, Qiyang (Massachusetts Institute of Technology)
Yildiz, Bilge (Massachusetts Institute of Technology)
Martínez, Benjamín
(Institut de Ciència de Materials de Barcelona)
Pomar, Alberto
(Institut de Ciència de Materials de Barcelona)
Balcells Argemí, Lluís
(Institut de Ciència de Materials de Barcelona)
Sandiumenge Ortiz, Felip
(Institut de Ciència de Materials de Barcelona)
Date: |
2016 |
Abstract: |
Lattice-mismatched epitaxial films of LaSrMnO (LSMO) on LaAlO (001) substrates develop a crossed pattern of misfit dislocations above a critical thickness of 2. 5 nm. Upon film thickness increases, the dislocation density progressively increases, and the dislocation spacing distribution becomes narrower. At a film thickness of 7. 0 nm, the misfit dislocation density is close to the saturation for full relaxation. The misfit dislocation arrangement produces a 2D lateral periodic structure modulation (Λ≈ 16 nm) alternating two differentiated phases: one phase fully coherent with the substrate and a fully relaxed phase. This modulation is confined to the interface region between film and substrate. This phase separation is clearly identified by X-ray diffraction and further proven in the macroscopic resistivity measurements as a combination of two transition temperatures (with low and high T). Films thicker than 7. 0 nm show progressive relaxation, and their macroscopic resistivity becomes similar than that of the bulk material. Therefore, this study identifies the growth conditions and thickness ranges that facilitate the formation of laterally modulated nanocomposites with functional properties notably different from those of fully coherent or fully relaxed material. |
Note: |
Número d'acord de subvenció MINECO/MAT2011-29081-C02 |
Note: |
Número d'acord de subvenció MINECO/MAT2012-33207 |
Note: |
Número d'acord de subvenció MINECO/MAT2013-47869-C4-1-P |
Note: |
Número d'acord de subvenció MINECO/CSD2008-00023 |
Note: |
Número d'acord de subvenció EC/H2020/645658 |
Note: |
Número d'acord de subvenció AGAUR/2014/SGR-501 |
Note: |
Número d'acord de subvenció AGAUR/2014/SGR-1216 |
Rights: |
Tots els drets reservats.  |
Language: |
Anglès |
Document: |
article ; recerca ; acceptedVersion |
Subject: |
Strain relaxation ;
Misfit dislocation arrangement ;
Nanophase modulation ;
Nanotemplate |
Published in: |
ACS applied materials & interfaces, Vol. 8, Issue 26 (July 2016) , p. 16823-16832, ISSN 1944-8252 |
DOI: 10.1021/acsami.6b02896
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (scientific output) >
Experimental sciences >
Catalan Institute of Nanoscience and Nanotechnology (ICN2)Articles >
Research articlesArticles >
Published articles
Record created 2019-09-23, last modified 2020-09-18