Web of Science: 1 citations, Scopus: 1 citations, Google Scholar: citations,
DNA metabarcoding reveals modern and past eukaryotic communities in a high-mountain peat bog system
Garcés-Pastor, Sandra Universitat de Barcelona. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals
Wangensteen, Owen S. (Universitetet i Tromsø. Norges arktiske universitet)
Pérez Haase, Aaron (Universitat de Barcelona. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals)
Pèlachs Mañosa, Albert (Universitat Autònoma de Barcelona. Departament de Geografia)
Pérez Obiol, Ramon (Universitat Autònoma de Barcelona. Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia)
Cañellas Boltà, Núria (Instituto de Ciencias de la Tierra Jaume Almera)
Mariani, Stefano (University of Salford. School of Environment and Life Sciences)
Vegas-Vilarrúbia, Teresa (Universitat de Barcelona. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals)

Date: 2019
Abstract: Peat bogs located in high mountains are suitable places to study local environmental responses to climate variability. These ecosystems host a large number of eukaryotes with diverse taxonomic and functional diversity. We carried out a metabarcoding study using universal 18S and COI markers to explore the composition of past and present eukaryotic communities of a Pyrenean peat bog ecosystem. We assessed the molecular biodiversity of four different moss micro-habitats along a flood gradient in the lentic Bassa Nera system (Central Pyrenees). Five samples collected from different sediment depths at the same study site were also analysed, to test the suitability of these universal markers for studying paleoecological communities recovered from ancient DNA and to compare the detected DNA sequences to those obtained from the modern community. We also compared the information provided by the sedimentary DNA to the reconstruction from environmental proxies such as pollen and macro-remains from the same record. We successfully amplified ancient DNA with both universal markers from all sediment samples, including the deepest one (~ 10,000 years old). Most of the metabarcoding reads obtained from sediment samples, however, were assigned to living edaphic organisms and only a small fraction of those reads was considered to be derived from paleoecological communities. Inferences from ancient sedimentary DNA were complementary to the reconstruction based on pollen and macro-remains, and the combined records reveal more detailed information. This molecular study yielded promising findings regarding the diversity of modern eukaryotic peat bog communities. Nevertheless, even though information about past communities could be retrieved from sediment samples, preferential amplification of DNA from living communities is a caveat for the use of universal metabarcoding markers in paleoecology.
Rights: Tots els drets reservats.
Language: Anglès
Document: article ; recerca ; acceptedVersion
Subject: Sedimentary DNA ; Community DNA ; Peat bog paleoecology ; Eukaryotes ; Pyrenees
Published in: Journal of paleolimnology, Vol. 62, Issue 4 (Dec. 2019) , p. 425-441, ISSN 0921-2728

DOI: 10.1007/s10933-019-00097-x


Available from: 2020-12-30
Post-print

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2019-10-02, last modified 2020-08-02



   Favorit i Compartir