Convergence properties and fixed points of two general iterative schemes with composed maps in banach spaces with applications to guaranteed global stability
De la Sen, Manuel 
(Universidad del País Vasco. Departamento de Electricidad y Electrónica)
Ibeas, Asier 
(Universitat Autònoma de Barcelona. Departament de Telecomunicació i Enginyeria de Sistemes)
| Date: |
2014 |
| Abstract: |
This paper investigates the boundedness and convergence properties of two general iterative processes which involve sequences of self-mappings on either complete metric or Banach spaces. The sequences of self-mappings considered in the first iterative scheme are constructed by linear combinations of a set of self-mappings, each of them being a weighted version of a certain primary self-mapping on the same space. The sequences of self-mappings of the second iterative scheme are powers of an iteration-dependent scaled version of the primary self-mapping. Some applications are also given to the important problem of global stability of a class of extended nonlinear polytopic-type parameterizations of certain dynamic systems. |
| Grants: |
Ministerio de Economía y Competitividad DPI2012-30651
|
| Rights: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Published in: |
Abstract and applied analysis, Vol. 2014 (June 2014) , art. 948749, ISSN 1687-0409 |
DOI: 10.1155/2014/948749
The record appears in these collections:
Articles >
Research articlesArticles >
Published articles
Record created 2019-11-05, last modified 2022-02-06