Web of Science: 78 citations, Scopus: 79 citations, Google Scholar: citations,
Colloidal Ni-Co-Sn nanoparticles as efficient electrocatalysts for the methanol oxidation reaction
Li, Junshan (Institut de Recerca en Energia de Catalunya)
Luo, Zhishan (Institut de Recerca en Energia de Catalunya)
He, Feng (University of Chinese Academy of Sciences)
Zuo, Yong (Institut de Recerca en Energia de Catalunya)
Zhang, Chaoqi (Institut de Recerca en Energia de Catalunya)
Liu, Junfeng (Institut de Recerca en Energia de Catalunya)
Yu, Xiaoting (Institut de Recerca en Energia de Catalunya)
Du, Ruifeng (Institut de Recerca en Energia de Catalunya)
Zhang, Ting (Institut Català de Nanociència i Nanotecnologia)
Infante Carrió, María F. (Institut Català de Nanociència i Nanotecnologia)
Tang, PengYi (Institut Català de Nanociència i Nanotecnologia)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Llorca, Jordi (Universitat Politècnica de Catalunya. Departament d'Enginyeria Química)
Cabot, Andreu (Institut de Recerca en Energia de Catalunya)

Date: 2018
Abstract: The deployment of direct methanol fuel cells requires engineering cost-effective and durable electrocatalysts for the methanol oxidation reaction (MOR). As an alternative to noble metals, Ni-based alloys have shown excellent performance and good stability toward the MOR. Herein, we present a series of NiCoSn colloidal nanoparticles (NPs) with composition tuned over the entire Ni/Co range (0 ≤ x ≤ 3). We demonstrate electrodes based on these ternary NPs to provide improved catalytic performance toward the MOR in an alkaline medium when compared with binary NiSn NPs. A preliminary composition optimization resulted in NiCoSn NP-based electrodes exhibiting extraordinary mass current densities, up to 1050 mA mg, at 0. 6 V vs. Hg/HgO in 1. 0 M KOH containing 1. 0 M methanol. This current density was about two-fold higher than that of NiSn electrodes (563 mA mg). The excellent performance obtained with the substitution of small amounts of Ni by Co was concomitant with an increase of the surface coverage of active species and an enhancement of the diffusivity of the reaction limiting species. Additionally, saturation of the catalytic activity at higher methanol concentrations was measured for NiCoSn NP-based electrodes containing a small amount of Co when compared with binary NiSn NPs. While the electrode stability was improved with respect to elemental Ni NP-based electrodes, the introduction of small amounts of Co slightly decreased the cycling performance. Additionally, Sn, a key element to improve stability with respect to elemental Ni NPs, was observed to slowly dissolve in the presence of KOH. Density functional theory calculations on metal alloy surfaces showed the incorporation of Co within the NiSn structure to provide more effective sites for CO and CHOH adsorption. However, the relatively lower stability could not be related to CO or CHOH poisoning.
Grants: Ministerio de Economía y Competitividad ENE2016-77798-C4-3-R
Ministerio de Economía y Competitividad ENE2017-85087-C3
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Ministerio de Economía y Competitividad SEV-2013-0295
Ministerio de Economía y Competitividad ENE2015-63969-R
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-128
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Subject: Catalytic performance ; Colloidal nanoparticles ; Composition optimization ; Cycling performance ; Electrode stability ; Engineering costs ; Methanol concentration ; Methanol oxidation reactions
Published in: Journal of materials chemistry, Vol. 6, Issue 45 (December 2018) , p. 22915-22924, ISSN 2050-7496

DOI: 10.1039/c8ta08242a


Preprint
27 p, 8.5 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2019-12-20, last modified 2022-11-29



   Favorit i Compartir