Google Scholar: cites
Multilayered Hematite Nanowires with Thin-Film Silicon Photovoltaics in an All-Earth-Abundant Hybrid Tandem Device for Solar Water Splitting
Urbain, Félix (Institut de Recerca en Energia de Catalunya)
Tang, PengYi (Institut Català de Nanociència i Nanotecnologia)
Smirnov, Vladimir (Forschungszentrum Jülich)
Welter, Katharina (Forschungszentrum Jülich)
Andreu, Teresa (Institut de Recerca en Energia de Catalunya)
Finger, Friedhelm (Forschungszentrum Jülich)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Morante, Joan Ramon (Institut de Recerca en Energia de Catalunya)

Títol variant: Insights into the Combination of Multilayered Hematite Nanowires with Thin-Film Silicon Photovoltaics in an All-Earth-Abundant Hybrid Tandem Device for Solar Water Splitting
Data: 2019
Resum: The concept of hybrid tandem device structures that combine metal oxides with thin-film semiconducting photoabsorbers holds great promise for large-scale, robust, and cost-effective bias-free photoelectrochemical water splitting (PEC-WS). This work highlights important steps toward the efficient coupling of high-performance hematite photoanodes with multijunction thin-film silicon photocathodes providing high bias-free photocurrent density. The hybrid PEC-WS device is optimized by testing three types of multijunction silicon photocathodes with the hematite photoanode: amorphous silicon (a-Si:H) tandem: a-Si:H/a-Si:H and triple junction with microcrystalline silicon (μc-Si:H): a-Si:H/a-Si:H/μc-Si:H and a-Si:H/μc-Si:H/μc-Si:H. The results provide evidence that the multijunction structures offer high flexibility for hybrid tandem devices with regard to tunable photovoltages and spectral matching. Furthermore, both photoanode and photocathode are tested under various electrolyte and light concentration conditions, respectively, with respect to their photoelectrochemical performance and stability. A 27 % enhancement in the solar-to-hydrogen conversion efficiency is observed upon concentrating light from 100 to 300 mW cm . Ultimately, bias-free water splitting is demonstrated, with a photocurrent density of 4. 6 mA cm (under concentrated illumination) paired with excellent operation stability for more than 24 h of the all-earth-abundant and low-cost hematite/silicon tandem PEC-WS device.
Ajuts: Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1246
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Ministerio de Economía y Competitividad MAT2014-59961
Ministerio de Economía y Competitividad ENE2016-80788-C5-5-R
Ministerio de Economía y Competitividad ENE2017-85087
Ministerio de Economía y Competitividad SEV-2017-0706
Ministerio de Economía y Competitividad FJCI-2016-29147
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Matèria: Hematite ; Silicon ; Tandem devices ; Thin films ; Water splitting
Publicat a: ChemSusChem, Vol. 12, Issue 7 (April 2019) , p. 1428-1436, ISSN 1864-564X

DOI: 10.1002/cssc.201802845


Preprint
17 p, 1.2 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-02-06, darrera modificació el 2022-09-10



   Favorit i Compartir