Genus bounds in right-angled Artin groups
Forester, Max (University of Oklahoma. Department of Mathematics)
Soroko, Ignat (Louisiana State University. Department of Mathematics)
Tao, Jing (University of Oklahoma. Department of Mathematics)
| Date: |
2020 |
| Abstract: |
We show that, in any right-angled Artin group whose defining graph has chromatic number k, every non-trivial element has stable commutator length at least 1/(6k). Secondly, if the defining graph does not contain triangles, then every non-trivial element has stable commutator length at least 1/20. These results are obtained via an elementary geometric argument based on earlier work of Culler. |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Subject: |
Stable commutator length ;
Right-angled artin groups ;
Non-overlapping property |
| Published in: |
Publicacions matemàtiques, Vol. 64 Núm. 1 (2020) , p. 233-253, ISSN 2014-4350 |
Adreça alternativa: https://raco.cat/index.php/PublicacionsMatematiques/article/view/362895
DOI: 10.5565/PUBLMAT6412010
The record appears in these collections:
Articles >
Published articles >
Publicacions matemàtiquesArticles >
Research articles
Record created 2020-02-15, last modified 2024-11-17