| Home > Books and collections > Book chapters > On the set of periods of the 2-periodic Lyness' equation |
| Imprint: | Cham, Switzerland: Springer, 2016 |
| Description: | 14 pàg. |
| Abstract: | We study the periodic solutions of the non-autonomous periodic Lyness' recurrence u = (a + u )/u, where {a} is a cycle with positive values a,b and with positive initial conditions. Among other methodological issues we give an outline of the proof of the following results: (1) If (a, b) ≠ (1, 1), then there exists a value p(a, b) such that for any p > p(a, b) there exist continua of initial conditions giving rise to 2p-periodic sequences. (2) The set of minimal periods arising when (a, b) ∈ (0,∞) and positive initial conditions are considered, contains all the even numbers except 4, 6, 8, 12 and 20. If a ≠ b, then it does not appear any odd period, except 1. |
| Grants: | Ministerio de Economía y Competitividad DPI2011-25822 Ministerio de Economía y Competitividad DPI2016-77407-P |
| Note: | Publicació amb motiu de la International Conference on Difference Equations and Applications (July 22-27, 2012, Barcelona, Spain) amb el títol Difference Equations, Discrete Dynamical Systems and Applications |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Series: | Springer Proceedings in Mathematics & Statistics ; 180 |
| Document: | Capítol de llibre ; recerca ; Versió acceptada per publicar |
| Subject: | Difference equations with periodic coefficients ; Elliptic curves ; Lyness' type equations ; QRT maps ; Rotation number ; Periodic orbits |
| Published in: | IDifference Equations, Discrete Dynamical Systems and Applications, 2016, p. 321-335, ISBN 978-3-662-52927-0 |
Postprint 14 p, 253.9 KB |