Google Scholar: citas
Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate
Eller, Cleiton B. (University of Campinas. Department of Plant Biology)
Rowland, Lucy (University of Exeter. College of Life and Environmental Sciences)
Mencuccini, Maurizio (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Rosas, Teresa (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Williams, Karina (Met Office Hadley Centre)
Harper, Anna (University of Exeter. College of Engineering, Mathematics and Physical Sciences)
Medlyn, Belinda E. (Western Sydney University. Hawkesbury Institute for the Environment)
Wagner, Yael (Weizmann Institute of Science (Israel). Department of Plant and Environmental Sciences)
Klein, Tamir (Weizmann Institute of Science (Israel). Department of Plant and Environmental Sciences)
Teodoro, Grazielle S. (Federal University of Pará. Institute of Biological Sciences)
Oliveira, Rafael S. (University of Campinas. Department of Plant Biology)
Matos, Ilaine S. (Rio de Janeiro State University. Department of Ecology)
Rosado, Bruno H. P. (Rio de Janeiro State University. Department of Ecology)
Fuchs, Kathrin (ETH Zurich)
Wohlfahrt, Georg (University of Innsbruck. Department of Ecology)
Montagnani, Leonardo (Autonomous Province of Bolzano)
Meir, Patrick (University of Edinburgh)
Sitch, Stephen (University of Exeter. College of Life and Environmental Sciences)
Cox, Peter M. (University of Exeter. College of Engineering, Mathematics and Physical Sciences)

Fecha: 2020
Resumen: Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. We developed an analytical stomatal optimization model based on xylem hydraulics (SOX) to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment Simulator (JULES) LSM, we conducted a global evaluation of SOX against leaf- and ecosystem-level observations. SOX simulates leaf stomatal conductance responses to climate for woody plants more accurately and parsimoniously than the existing JULES stomatal conductance model. An ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross primary productivity (GPP) to soil moisture, which improves the model agreement with observations and increases the predicted annual GPP by 30% in relation to JULES. SOX decreases JULES root-mean-square error in GPP by up to 45% in evergreen tropical forests, and can simulate realistic patterns of canopy water potential and soil water dynamics at the studied sites. SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and optimality theory into LSMs, and an alternative to empirical stress factors.
Derechos: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Lengua: Anglès
Documento: Article ; recerca ; Versió publicada
Materia: Climate change ; Drought ; Eddy covariance ; Land-surface models ; Stomatal optimization ; Xylem hydraulics
Publicado en: The new phytologist, Vol. 226, Issue 6 (June 2020) , p. 1622-1637, ISSN 1469-8137

DOI: 10.1111/nph.16419
PMID: 31916258


16 p, 2.2 MB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2020-07-06, última modificación el 2024-01-22



   Favorit i Compartir