Google Scholar: citations
Boosting room-temperature magneto-ionics in a non-magnetic oxide semiconductor
de Rojas, Julius (Universitat Autònoma de Barcelona. Departament de Física)
Quintana Puebla, Alberto (Georgetown University. Department of Physics (USA))
Lopeandía Fernández, Aitor (Universitat Autònoma de Barcelona. Departament de Física)
Salguero, Joaquín (Instituto de Micro y Nanotecnología)
Costa-Krämer, José L. (Instituto de Micro y Nanotecnología)
Abad, Llibertat (Institut de Microelectrònica de Barcelona)
Liedke, Maciej Oskar (Helmholtz-Zentrum Dresden-Rossendorf. Institute of Radiation Physics (Germany))
Butterling, Maik (Helmholtz-Zentrum Dresden-Rossendorf. Institute of Radiation Physics (Germany))
Wagner, Andreas (Helmholtz-Zentrum Dresden-Rossendorf. Institute of Radiation Physics (Germany))
Henderick, Lowie (Ghent University. Department of Solid State Sciences (Belgium))
Dendooven, Jolien (Ghent University. Department of Solid State Sciences (Belgium))
Detavernier, Christophe (Ghent University. Department of Solid State Sciences (Belgium))
Sort Viñas, Jordi (Universitat Autònoma de Barcelona. Departament de Física)
Menéndez Dalmau, Enric (Universitat Autònoma de Barcelona. Departament de Física)

Date: 2020
Abstract: Voltage control of magnetism through electric field-induced oxygen motion (magneto-ionics) could represent a significant breakthrough in the pursuit for new strategies to enhance energy efficiency in magnetically actuated devices. Boosting the induced changes in magnetization, magneto-ionic rates and cyclability continue to be key challenges to turn magneto-ionics into real applications. Here, it is demonstrated that room-temperature magneto-ionic effects in electrolyte-gated paramagnetic Co3O4 films can be largely increased both in terms of generated magnetization (6 times larger) and speed (35 times faster) if the electric field is applied using an electrochemical capacitor configuration (utilizing an underlying conducting buffer layer) instead of placing the electric contacts at the side of the semiconductor (electric-double-layer transistor-like configuration). This is due to the greater uniformity and strength of the electric field in the capacitor design. These results are appealing to widen the use of ion migration in technological applications such as neuromorphic computing or iontronics in general.
Grants: European Commission 648454
Ministerio de Economía y Competitividad MAT2017-86357-C3-1-R
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-292
Agència de Gestió d'Ajuts Universitaris i de Recerca 2018/LLAV-00032
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Capacitors ; Low-power spintronics ; Magnetoelectric effects ; Magneto-ionics ; Transistors
Published in: Advanced functional materials, Vol. 30, Issue 36 (September 2020) , art. 2003704, ISSN 1616-3028

DOI: 10.1002/adfm.202003704


Postprint
34 p, 1.9 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Group of Smart Nanoengineered Materials, Nanomechanics and Nanomagnetism (Gnm3) > SPIN-PORICS
Articles > Research articles
Articles > Published articles

 Record created 2020-10-28, last modified 2025-12-03



   Favorit i Compartir