Graphene on two-dimensional hexagonal BN, AlN, and GaN : electronic, spin-orbit, and spin relaxation properties
Zollner, Klaus 
(University of Regensburg. Institute for Theoretical Physics)
Cummings, Aron 
(Institut Català de Nanociència i Nanotecnologia)
Roche, Stephan 
(Institut Català de Nanociència i Nanotecnologia)
Fabian, Jaroslav 
(University of Regensburg. Institute for Theoretical Physics)
| Fecha: |
2021 |
| Resumen: |
We investigate the electronic band structure of graphene on a series of two-dimensional hexagonal nitride insulators hXN, X=B, Al, and Ga, with first-principles calculations. A symmetry-based model Hamiltonian is employed to extract orbital parameters and spin-orbit coupling (SOC) from the low-energy Dirac bands of the proximitized graphene. While commensurate hBN induces a staggered potential of about 10 meV into the Dirac band structure, less lattice-matched hAlN and hGaN disrupt the Dirac point much less, giving a staggered gap below 100 μeV. Proximitized intrinsic SOC surprisingly does not increase much above the pristine graphene value of 12 μeV; it stays in the window of 1-16 μeV, depending strongly on stacking. However, Rashba SOC increases sharply when increasing the atomic number of the boron group, with calculated maximal values of 8, 15, and 65 μeV for B-, Al-, and Ga-based nitrides, respectively. The individual Rashba couplings also depend strongly on stacking, vanishing in symmetrically sandwiched structures, and can be tuned by a transverse electric field. The extracted spin-orbit parameters were used as input for spin transport simulations based on Chebyshev expansion of the time-evolution of the spin expectation values, yielding interesting predictions for the electron spin relaxation. Spin lifetime magnitudes and anisotropies depend strongly on the specific (hXN)/graphene/hXN system, and they can be efficiently tuned by an applied external electric field as well as the carrier density in the graphene layer. A particularly interesting case for experiments is graphene/hGaN, in which the giant Rashba coupling is predicted to induce spin lifetimes of 1-10 ns, short enough to dominate over other mechanisms, and lead to the same spin relaxation anisotropy as that observed in conventional semiconductor heterostructures: 50%, meaning that out-of-plane spins relax twice as fast as in-plane spins. |
| Ayudas: |
European Commission 881603 Ministerio de Economía y Competitividad SEV-2017-0706
|
| Nota: |
This work was funded by the CERCA Programme/Generalitat de Catalunya. |
| Derechos: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Lengua: |
Anglès |
| Documento: |
Article ; recerca ; Versió sotmesa a revisió |
| Materia: |
Electron-spin relaxation ;
Electronic band structure ;
External electric field ;
First-principles calculation ;
Sandwiched structure ;
Semiconductor heterostructures ;
Spin-orbit parameters ;
Transverse electric field |
| Publicado en: |
Physical review B, Vol. 103, issue 7 (Feb. 2021) , art. 75129, ISSN 2469-9969 |
DOI: 10.1103/PhysRevB.103.075129
El registro aparece en las colecciones:
Documentos de investigación >
Documentos de los grupos de investigación de la UAB >
Centros y grupos de investigación (producción científica) >
Ciencias >
Institut Català de Nanociència i Nanotecnologia (ICN2)Artículos >
Artículos de investigaciónArtículos >
Artículos publicados
Registro creado el 2021-05-28, última modificación el 2024-11-17