Google Scholar: cites
Graphene oxide nanosheets interact and interfere with SARS-CoV-2 surface proteins and cell receptors to inhibit infectivity
Unal, Mehmet Altay (Ankara University. Stem Cell Institute (Turkey))
Bayrakdar, Fatma (Ministry of Health General Directorate of Public Health. Microbiology References Laboratory (Turkey))
Nazir, Hasan (Ankara University. Department of Chemistry (Turkey))
Besbinar, Omur (Ankara University. Stem Cell Institute (Turkey))
Gurcan, Cansu (Ankara University. Stem Cell Institute (Turkey))
Lozano, Neus (Institut Català de Nanociència i Nanotecnologia)
Arellano, Luis M. (Institut Català de Nanociència i Nanotecnologia)
Yalcin, Süleyman (Ministry of Health General Directorate of Public Health. Microbiology References Laboratory (Turkey))
Panatli, Oguzhan (Ankara University. Department of Biomedical Engineering (Turkey))
Celik, Dogantan (Ankara University. Stem Cell Institute (Turkey))
Alkaya, Damla (Ankara University. Stem Cell Institute (Turkey))
Agan, Aydan (Ankara University. Department of Biomedical Engineering (Turkey))
Fusco, Laura (University of Padua. Department of Biomedical Sciences (Italy))
Suzuk Yildiz, Serap (Ministry of Health General Directorate of Public Health. Microbiology References Laboratory (Turkey))
Delogu, Lucia Gemma (University of Padua. Department of Biomedical Sciences (Italy))
Akcali, Kamil Can (Ankara University. Stem Cell Institute (Turkey))
Kostarelos, Kostas (Institut Català de Nanociència i Nanotecnologia)
Yilmazer, Acelya (Ankara University. Stem Cell Institute (Turkey))

Data: 2021
Resum: Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID-19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS-CoV-2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS-CoV-2 viral spike (open state - 6VYB or closed state - 6VXX), ACE2 (1R42), and the ACE2-bound spike complex (6M0J) are performed. GO shows high affinity for the surface of all three structures (6M0J, 6VYB and 6VXX). When binding affinities and involved bonding types are compared, GO interacts more strongly with the spike or ACE2, compared to 6M0J. Infection experiments using infectious viral particles from four different clades as classified by Global Initiative on Sharing all Influenza Data (GISAID), are performed for validation purposes. Thin, biological-grade GO nanoscale (few hundred nanometers in lateral dimension) sheets are able to significantly reduce copies for three different viral clades. This data has demonstrated that GO sheets have the capacity to interact with SARS-CoV-2 surface components and disrupt infectivity even in the presence of any mutations on the viral spike. GO nanosheets are proposed to be further explored as a nanoscale platform for development of antiviral strategies against COVID-19.
Ajuts: European Commission 785219
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Antiviral therapeutics ; COVID-19 ; In silico ; In vitro ; Viral mutations
Publicat a: Small, Vol. 17, Issue 25 (June 2021) , art. 2101483, ISSN 1613-6829

DOI: 10.1002/smll.202101483
PMID: 33988903


13 p, 2.5 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2021-07-05, darrera modificació el 2023-10-24



   Favorit i Compartir