Reverse Faber-Krahn inequality for a truncated Laplacian operator
Parini, Enea 
(Aix-Marseille Université)
Rossi, Julio D. 
(Universidad de Buenos Aires. Departamento de Matemática)
Salort, Ariel 
(Universidad de Buenos Aires. Departamento de Matemática)
| Fecha: |
2022 |
| Resumen: |
In this paper we prove a reverse Faber-Krahn inequality for the principal eigenvalue µ1(Ω) of the fully nonlinear eigenvalue problem (-λN (D2u) = µu in Ω,u = 0 on ∂Ω. Here λN (D2u) stands for the largest eigenvalue of the Hessian matrix of u. More precisely, we prove that, for an open, bounded, convex domain Ω ⊂ RN , the inequality µ1(Ω) ≤π2[diam(Ω)]2= µ1(Bdiam(Ω)/2), where diam(Ω) is the diameter of Ω, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint. Furthermore, we discuss the minimization of µ1(Ω) under different kinds of constraints. |
| Derechos: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Lengua: |
Anglès |
| Documento: |
Article ; recerca ; Versió publicada |
| Materia: |
Truncated laplacian ;
Reverse faber-krahn inequality ;
Spectral optimization |
| Publicado en: |
Publicacions matemàtiques, Vol. 66 Núm. 2 (2022) , p. 441-455 (Articles) , ISSN 2014-4350 |
Adreça original: https://raco.cat/index.php/PublicacionsMatematiques/article/view/402225
DOI: 10.5565/PUBLMAT6622201
El registro aparece en las colecciones:
Artículos >
Artículos publicados >
Publicacions matemàtiquesArtículos >
Artículos de investigación
Registro creado el 2022-07-27, última modificación el 2025-10-12