Google Scholar: cites
Metal oxide clusters on nitrogen-doped carbon are highly selective for CO2 electroreduction to CO
Li, Jingkun (Université de Montpellier. Institut Charles Gerhardt)
Zitolo, Andrea (Synchrotron SOLEIL)
Garcés-Pineda, Felipe A. (Institut Català d'Investigació Química)
Asset, Tristan (University of California Irvine. Department of Chemical and Biomolecular Engineering)
Kodali, Mounika (University of California Irvine. Department of Chemical and Biomolecular Engineering)
Tang, PengYi (Institut Català de Nanociència i Nanotecnologia)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Galán-Mascarós, José Ramón (Institució Catalana de Recerca i Estudis Avançats)
Atanassov, Plamen (University of California Irvine. Department of Chemical and Biomolecular Engineering)
Zenyuk, IrynaV. (University of California Irvine. Department of Chemical and Biomolecular Engineering)
Sougrati, Moulay Tahar (Université de Montpellier. Institut Charles Gerhardt)
Jaouen, Frédéric (Université de Montpellier. Institut Charles Gerhardt)

Data: 2021
Resum: The electrochemical reduction of CO2 (eCO2RR) using renewable energy is an effective approach to pursue carbon neutrality. The eCO2RR to CO is indispensable in promoting C-C coupling through bifunctional catalysis and achieving cascade conversion from CO2 to C2+. This work investigates a series of M/N-C (M = Mn, Fe, Co, Ni, Cu, and Zn) catalysts, for which the metal precursor interacted with the nitrogen-doped carbon support (N-C) at room temperature, resulting in the metal being present as (sub)nanosized metal oxide clusters under ex situ conditions, except for Cu/N-C and Zn/N-C. A volcano trend in their activity toward CO as a function of the group of the transition metal is revealed, with Co/N-C exhibiting the highest activity at -0. 5 V versus RHE, while Ni/N-C shows both appreciable activity and selectivity. Operando X-ray absorption spectroscopy shows that the majority of Cu atoms in Cu/N-C form Cu0 clusters during eCO2RR, while Mn/, Fe/, Co/, and Ni/N-C catalysts maintain the metal hydroxide structures, with a minor amount of M0 formed in Fe/, Co/, and Ni/N-C. The superior activity of Fe/, Co/, and Ni/N-C is ascribed to the phase contraction and the HCO3- insertion into the layered structure of metal hydroxides. Our work provides a facile synthetic approach toward highly active and selective electrocatalysts to convert CO2 into CO. Coupled with state-of-the-art NiFe-based anodes in a full-cell device, Ni/N-C exhibits >80% Faradaic efficiency toward CO at 100 mA cm-2.
Ajuts: European Commission 732840
Ministerio de Economía y Competitividad CEX2019-000925-S
Ministerio de Ciencia e Innovación RTI2018-095618-B-I00
Ministerio de Ciencia e Innovación ENE2017-85087-C3
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1406
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Matèria: Catalysts ; Materials ; Metals ; Transition metals ; X-ray absorption near edge spectroscopy
Publicat a: ACS catalysis, Vol. 11, issue 15 (August 2021) , p. 10028-10042, ISSN 2155-5435

DOI: 10.1021/acscatal.1c01702


Preprint
43 p, 4.9 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2023-02-16, darrera modificació el 2023-07-10



   Favorit i Compartir