Google Scholar: cites
Tuning the electronic bandgap of graphdiyne by H-substitution to promote interfacial charge carrier separation for enhanced photocatalytic hydrogen production
Li, Jian (Centre national de la recherche scientifique. Institut de Chimie Physique)
Slassi, Amine (Université de Mons. Laboratoire de Chimie des Nouveaux Matériaux)
Han, Xu (Institut Català de Nanociència i Nanotecnologia)
Cornil, David (Université de Mons. Laboratoire de Chimie des Nouveaux Matériaux)
Ha-Thi, Minh-Huong (Université Paris-Saclay)
Pino, Thomas (Centre national de la recherche scientifique. Institut des Sciences Moléculaires d'Orsay)
Debecker, Damien P. (Université Catholique de Louvain)
Colbeau-Justin, Christophe (Centre national de la recherche scientifique. Institut de Chimie Physique)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Cornil, Jerome (Université de Mons. Laboratoire de Chimie des Nouveaux Matériaux)
Ghazzal, Mohamed Nawfal (Centre national de la recherche scientifique. Institut de Chimie Physique)

Data: 2021
Resum: Graphdiyne (GDY), which features a highly π-conjugated structure, direct bandgap, and high charge carrier mobility, presents the major requirements for photocatalysis. Up to now, all photocatalytic studies are performed without paying too much attention on the GDY bandgap (1. 1 eV at the GW many-body theory level). Such a narrow bandgap is not suitable for the band alignment between GDY and other semiconductors, making it difficult to achieve efficient photogenerated charge carrier separation. Herein, for the first time, it is demonstrated that tuning the electronic bandgap of GDY via H-substitution (H-GDY) promotes interfacial charge separation and improves photocatalytic H evolution. The H-GDY exhibits an increased bandgap energy (≈2. 5 eV) and exploitable conduction band minimum and valence band maximum edges. As a representative semiconductor, TiO is hybridized with both H-GDY and GDY to fabricate a heterojunction. Compared to the GDY/TiO, the H-GDY/TiO heterojunction leads to a remarkable enhancement of the photocatalytic H generation by 1. 35 times under UV-visible illumination (6200 µmol h g) and four times under visible light (670 µmol h g). Such enhancement is attributed to the suitable band alignment between H-GDY and TiO, which efficiently promotes the photogenerated electron and hole separation, as supported by density functional theory calculations.
Ajuts: Ministerio de Economía y Competitividad ENE2017-85087-C3
Ministerio de Economía y Competitividad SEV-2017-0706
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Nota: Altres ajuts: ICN2 was funded by the CERCA Programme/Generalitat de Catalunya. Part of the present work was performed in the framework of Universitat Autònoma de Barcelona Materials Science Ph.D. program.
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Matèria: Charge carrier ; Density functional theory ; Electronic bandgaps ; Graphdiyne ; Photocatalysis
Publicat a: Advanced functional materials, Vol. 31, issue 29 (July 2021) , art. 2100994, ISSN 1616-3028

DOI: 10.1002/adfm.202100994


Preprint.
19 p, 3.3 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2023-02-16, darrera modificació el 2023-05-24



   Favorit i Compartir